Boosting Structure Consistency for Multispectral and Multimodal Image Registration

Multispectral imaging plays a vital role in the area of computer vision and computational photography. As spectral band images can be misaligned due to imaging device movement or alternation, image registration is necessary to avoid spectral information distortion. The current registration measures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2020, Vol.29, p.5147-5162
Hauptverfasser: Cao, Si-Yuan, Shen, Hui-Liang, Chen, Shu-Jie, Li, Chunguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5162
container_issue
container_start_page 5147
container_title IEEE transactions on image processing
container_volume 29
creator Cao, Si-Yuan
Shen, Hui-Liang
Chen, Shu-Jie
Li, Chunguang
description Multispectral imaging plays a vital role in the area of computer vision and computational photography. As spectral band images can be misaligned due to imaging device movement or alternation, image registration is necessary to avoid spectral information distortion. The current registration measures specialized for multispectral data are typically robust yet complex, requiring excessive computation. The common measures such as sum of squared differences (SSD) and sum of absolute differences (SAD) are computationally efficient whereas they perform poorly on multispectral data. To cope with this challenge, we propose a structure consistency boosting (SCB) transform that aims at boosting the structural similarity of multispectral images. With SCB, the common measures can be employed for multispectral image registration. The SCB transform exploits the fact that inherent edge structures maintain relative saliency locally despite the nonlinear variation between band images. A statistical prior of the natural image, which is based on the gradient-intensity correlation, is explored to build a parametric form of SCB. Experimental results validate that the SCB transform outperforms current similarity enhancement algorithms, and performs better than the state-of-the-art multispectral registration measures. Thanks to the generality of the statistical prior, the SCB transform is also applicable to various multimodal data such as flash/no-flash images and medical images.
doi_str_mv 10.1109/TIP.2020.2980972
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9043847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9043847</ieee_id><sourcerecordid>2381817836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6945521a74660aa4c10f478ed0ba08eaaf37f23c283c67433564e63a2c36d5ac3</originalsourceid><addsrcrecordid>eNo9kEtLAzEURoMoWKt7wc2A66k3j8ljqcVHoaLUug4xkylT2smYZBb996ZMcXUfnO9eOAjdYphhDOphvficESAwI0qCEuQMTbBiuARg5Dz3UIlSYKYu0VWMWwDMKswnaPXkfUxttym-UhhsGoIr5r6LbUyus4ei8aF4H3apjb2zKZhdYbp63Ox9ncfF3mxcsXKbnAgmtb67RheN2UV3c6pT9P3yvJ6_lcuP18X8cVlaonAquWJVRbARjHMwhlkMDRPS1fBjQDpjGioaQi2R1HLBKK04c5waYimvK2PpFN2Pd_vgfwcXk976IXT5pSZUYomFpDxTMFI2-BiDa3Qf2r0JB41BH83pbE4fzemTuRy5GyOtc-4fV8CoZIL-Ae14aho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2381817836</pqid></control><display><type>article</type><title>Boosting Structure Consistency for Multispectral and Multimodal Image Registration</title><source>IEEE Electronic Library (IEL)</source><creator>Cao, Si-Yuan ; Shen, Hui-Liang ; Chen, Shu-Jie ; Li, Chunguang</creator><creatorcontrib>Cao, Si-Yuan ; Shen, Hui-Liang ; Chen, Shu-Jie ; Li, Chunguang</creatorcontrib><description>Multispectral imaging plays a vital role in the area of computer vision and computational photography. As spectral band images can be misaligned due to imaging device movement or alternation, image registration is necessary to avoid spectral information distortion. The current registration measures specialized for multispectral data are typically robust yet complex, requiring excessive computation. The common measures such as sum of squared differences (SSD) and sum of absolute differences (SAD) are computationally efficient whereas they perform poorly on multispectral data. To cope with this challenge, we propose a structure consistency boosting (SCB) transform that aims at boosting the structural similarity of multispectral images. With SCB, the common measures can be employed for multispectral image registration. The SCB transform exploits the fact that inherent edge structures maintain relative saliency locally despite the nonlinear variation between band images. A statistical prior of the natural image, which is based on the gradient-intensity correlation, is explored to build a parametric form of SCB. Experimental results validate that the SCB transform outperforms current similarity enhancement algorithms, and performs better than the state-of-the-art multispectral registration measures. Thanks to the generality of the statistical prior, the SCB transform is also applicable to various multimodal data such as flash/no-flash images and medical images.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2020.2980972</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; common measures ; Computer vision ; Consistency ; gradient descent ; image pyramid ; Image registration ; Medical imaging ; multimodal image ; Multispectral image ; optimization ; Registration ; Similarity ; similarity enhancement ; structural consistency boosting</subject><ispartof>IEEE transactions on image processing, 2020, Vol.29, p.5147-5162</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6945521a74660aa4c10f478ed0ba08eaaf37f23c283c67433564e63a2c36d5ac3</citedby><cites>FETCH-LOGICAL-c291t-6945521a74660aa4c10f478ed0ba08eaaf37f23c283c67433564e63a2c36d5ac3</cites><orcidid>0000-0003-3147-1553 ; 0000-0001-8469-019X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9043847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9043847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao, Si-Yuan</creatorcontrib><creatorcontrib>Shen, Hui-Liang</creatorcontrib><creatorcontrib>Chen, Shu-Jie</creatorcontrib><creatorcontrib>Li, Chunguang</creatorcontrib><title>Boosting Structure Consistency for Multispectral and Multimodal Image Registration</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>Multispectral imaging plays a vital role in the area of computer vision and computational photography. As spectral band images can be misaligned due to imaging device movement or alternation, image registration is necessary to avoid spectral information distortion. The current registration measures specialized for multispectral data are typically robust yet complex, requiring excessive computation. The common measures such as sum of squared differences (SSD) and sum of absolute differences (SAD) are computationally efficient whereas they perform poorly on multispectral data. To cope with this challenge, we propose a structure consistency boosting (SCB) transform that aims at boosting the structural similarity of multispectral images. With SCB, the common measures can be employed for multispectral image registration. The SCB transform exploits the fact that inherent edge structures maintain relative saliency locally despite the nonlinear variation between band images. A statistical prior of the natural image, which is based on the gradient-intensity correlation, is explored to build a parametric form of SCB. Experimental results validate that the SCB transform outperforms current similarity enhancement algorithms, and performs better than the state-of-the-art multispectral registration measures. Thanks to the generality of the statistical prior, the SCB transform is also applicable to various multimodal data such as flash/no-flash images and medical images.</description><subject>Algorithms</subject><subject>common measures</subject><subject>Computer vision</subject><subject>Consistency</subject><subject>gradient descent</subject><subject>image pyramid</subject><subject>Image registration</subject><subject>Medical imaging</subject><subject>multimodal image</subject><subject>Multispectral image</subject><subject>optimization</subject><subject>Registration</subject><subject>Similarity</subject><subject>similarity enhancement</subject><subject>structural consistency boosting</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEURoMoWKt7wc2A66k3j8ljqcVHoaLUug4xkylT2smYZBb996ZMcXUfnO9eOAjdYphhDOphvficESAwI0qCEuQMTbBiuARg5Dz3UIlSYKYu0VWMWwDMKswnaPXkfUxttym-UhhsGoIr5r6LbUyus4ei8aF4H3apjb2zKZhdYbp63Ox9ncfF3mxcsXKbnAgmtb67RheN2UV3c6pT9P3yvJ6_lcuP18X8cVlaonAquWJVRbARjHMwhlkMDRPS1fBjQDpjGioaQi2R1HLBKK04c5waYimvK2PpFN2Pd_vgfwcXk976IXT5pSZUYomFpDxTMFI2-BiDa3Qf2r0JB41BH83pbE4fzemTuRy5GyOtc-4fV8CoZIL-Ae14aho</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Cao, Si-Yuan</creator><creator>Shen, Hui-Liang</creator><creator>Chen, Shu-Jie</creator><creator>Li, Chunguang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3147-1553</orcidid><orcidid>https://orcid.org/0000-0001-8469-019X</orcidid></search><sort><creationdate>2020</creationdate><title>Boosting Structure Consistency for Multispectral and Multimodal Image Registration</title><author>Cao, Si-Yuan ; Shen, Hui-Liang ; Chen, Shu-Jie ; Li, Chunguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6945521a74660aa4c10f478ed0ba08eaaf37f23c283c67433564e63a2c36d5ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>common measures</topic><topic>Computer vision</topic><topic>Consistency</topic><topic>gradient descent</topic><topic>image pyramid</topic><topic>Image registration</topic><topic>Medical imaging</topic><topic>multimodal image</topic><topic>Multispectral image</topic><topic>optimization</topic><topic>Registration</topic><topic>Similarity</topic><topic>similarity enhancement</topic><topic>structural consistency boosting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Si-Yuan</creatorcontrib><creatorcontrib>Shen, Hui-Liang</creatorcontrib><creatorcontrib>Chen, Shu-Jie</creatorcontrib><creatorcontrib>Li, Chunguang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao, Si-Yuan</au><au>Shen, Hui-Liang</au><au>Chen, Shu-Jie</au><au>Li, Chunguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Structure Consistency for Multispectral and Multimodal Image Registration</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2020</date><risdate>2020</risdate><volume>29</volume><spage>5147</spage><epage>5162</epage><pages>5147-5162</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Multispectral imaging plays a vital role in the area of computer vision and computational photography. As spectral band images can be misaligned due to imaging device movement or alternation, image registration is necessary to avoid spectral information distortion. The current registration measures specialized for multispectral data are typically robust yet complex, requiring excessive computation. The common measures such as sum of squared differences (SSD) and sum of absolute differences (SAD) are computationally efficient whereas they perform poorly on multispectral data. To cope with this challenge, we propose a structure consistency boosting (SCB) transform that aims at boosting the structural similarity of multispectral images. With SCB, the common measures can be employed for multispectral image registration. The SCB transform exploits the fact that inherent edge structures maintain relative saliency locally despite the nonlinear variation between band images. A statistical prior of the natural image, which is based on the gradient-intensity correlation, is explored to build a parametric form of SCB. Experimental results validate that the SCB transform outperforms current similarity enhancement algorithms, and performs better than the state-of-the-art multispectral registration measures. Thanks to the generality of the statistical prior, the SCB transform is also applicable to various multimodal data such as flash/no-flash images and medical images.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIP.2020.2980972</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3147-1553</orcidid><orcidid>https://orcid.org/0000-0001-8469-019X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2020, Vol.29, p.5147-5162
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_9043847
source IEEE Electronic Library (IEL)
subjects Algorithms
common measures
Computer vision
Consistency
gradient descent
image pyramid
Image registration
Medical imaging
multimodal image
Multispectral image
optimization
Registration
Similarity
similarity enhancement
structural consistency boosting
title Boosting Structure Consistency for Multispectral and Multimodal Image Registration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Structure%20Consistency%20for%20Multispectral%20and%20Multimodal%20Image%20Registration&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Cao,%20Si-Yuan&rft.date=2020&rft.volume=29&rft.spage=5147&rft.epage=5162&rft.pages=5147-5162&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2020.2980972&rft_dat=%3Cproquest_RIE%3E2381817836%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2381817836&rft_id=info:pmid/&rft_ieee_id=9043847&rfr_iscdi=true