Boosting Structure Consistency for Multispectral and Multimodal Image Registration
Multispectral imaging plays a vital role in the area of computer vision and computational photography. As spectral band images can be misaligned due to imaging device movement or alternation, image registration is necessary to avoid spectral information distortion. The current registration measures...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2020, Vol.29, p.5147-5162 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5162 |
---|---|
container_issue | |
container_start_page | 5147 |
container_title | IEEE transactions on image processing |
container_volume | 29 |
creator | Cao, Si-Yuan Shen, Hui-Liang Chen, Shu-Jie Li, Chunguang |
description | Multispectral imaging plays a vital role in the area of computer vision and computational photography. As spectral band images can be misaligned due to imaging device movement or alternation, image registration is necessary to avoid spectral information distortion. The current registration measures specialized for multispectral data are typically robust yet complex, requiring excessive computation. The common measures such as sum of squared differences (SSD) and sum of absolute differences (SAD) are computationally efficient whereas they perform poorly on multispectral data. To cope with this challenge, we propose a structure consistency boosting (SCB) transform that aims at boosting the structural similarity of multispectral images. With SCB, the common measures can be employed for multispectral image registration. The SCB transform exploits the fact that inherent edge structures maintain relative saliency locally despite the nonlinear variation between band images. A statistical prior of the natural image, which is based on the gradient-intensity correlation, is explored to build a parametric form of SCB. Experimental results validate that the SCB transform outperforms current similarity enhancement algorithms, and performs better than the state-of-the-art multispectral registration measures. Thanks to the generality of the statistical prior, the SCB transform is also applicable to various multimodal data such as flash/no-flash images and medical images. |
doi_str_mv | 10.1109/TIP.2020.2980972 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9043847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9043847</ieee_id><sourcerecordid>2381817836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6945521a74660aa4c10f478ed0ba08eaaf37f23c283c67433564e63a2c36d5ac3</originalsourceid><addsrcrecordid>eNo9kEtLAzEURoMoWKt7wc2A66k3j8ljqcVHoaLUug4xkylT2smYZBb996ZMcXUfnO9eOAjdYphhDOphvficESAwI0qCEuQMTbBiuARg5Dz3UIlSYKYu0VWMWwDMKswnaPXkfUxttym-UhhsGoIr5r6LbUyus4ei8aF4H3apjb2zKZhdYbp63Ox9ncfF3mxcsXKbnAgmtb67RheN2UV3c6pT9P3yvJ6_lcuP18X8cVlaonAquWJVRbARjHMwhlkMDRPS1fBjQDpjGioaQi2R1HLBKK04c5waYimvK2PpFN2Pd_vgfwcXk976IXT5pSZUYomFpDxTMFI2-BiDa3Qf2r0JB41BH83pbE4fzemTuRy5GyOtc-4fV8CoZIL-Ae14aho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2381817836</pqid></control><display><type>article</type><title>Boosting Structure Consistency for Multispectral and Multimodal Image Registration</title><source>IEEE Electronic Library (IEL)</source><creator>Cao, Si-Yuan ; Shen, Hui-Liang ; Chen, Shu-Jie ; Li, Chunguang</creator><creatorcontrib>Cao, Si-Yuan ; Shen, Hui-Liang ; Chen, Shu-Jie ; Li, Chunguang</creatorcontrib><description>Multispectral imaging plays a vital role in the area of computer vision and computational photography. As spectral band images can be misaligned due to imaging device movement or alternation, image registration is necessary to avoid spectral information distortion. The current registration measures specialized for multispectral data are typically robust yet complex, requiring excessive computation. The common measures such as sum of squared differences (SSD) and sum of absolute differences (SAD) are computationally efficient whereas they perform poorly on multispectral data. To cope with this challenge, we propose a structure consistency boosting (SCB) transform that aims at boosting the structural similarity of multispectral images. With SCB, the common measures can be employed for multispectral image registration. The SCB transform exploits the fact that inherent edge structures maintain relative saliency locally despite the nonlinear variation between band images. A statistical prior of the natural image, which is based on the gradient-intensity correlation, is explored to build a parametric form of SCB. Experimental results validate that the SCB transform outperforms current similarity enhancement algorithms, and performs better than the state-of-the-art multispectral registration measures. Thanks to the generality of the statistical prior, the SCB transform is also applicable to various multimodal data such as flash/no-flash images and medical images.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2020.2980972</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; common measures ; Computer vision ; Consistency ; gradient descent ; image pyramid ; Image registration ; Medical imaging ; multimodal image ; Multispectral image ; optimization ; Registration ; Similarity ; similarity enhancement ; structural consistency boosting</subject><ispartof>IEEE transactions on image processing, 2020, Vol.29, p.5147-5162</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6945521a74660aa4c10f478ed0ba08eaaf37f23c283c67433564e63a2c36d5ac3</citedby><cites>FETCH-LOGICAL-c291t-6945521a74660aa4c10f478ed0ba08eaaf37f23c283c67433564e63a2c36d5ac3</cites><orcidid>0000-0003-3147-1553 ; 0000-0001-8469-019X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9043847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9043847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao, Si-Yuan</creatorcontrib><creatorcontrib>Shen, Hui-Liang</creatorcontrib><creatorcontrib>Chen, Shu-Jie</creatorcontrib><creatorcontrib>Li, Chunguang</creatorcontrib><title>Boosting Structure Consistency for Multispectral and Multimodal Image Registration</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>Multispectral imaging plays a vital role in the area of computer vision and computational photography. As spectral band images can be misaligned due to imaging device movement or alternation, image registration is necessary to avoid spectral information distortion. The current registration measures specialized for multispectral data are typically robust yet complex, requiring excessive computation. The common measures such as sum of squared differences (SSD) and sum of absolute differences (SAD) are computationally efficient whereas they perform poorly on multispectral data. To cope with this challenge, we propose a structure consistency boosting (SCB) transform that aims at boosting the structural similarity of multispectral images. With SCB, the common measures can be employed for multispectral image registration. The SCB transform exploits the fact that inherent edge structures maintain relative saliency locally despite the nonlinear variation between band images. A statistical prior of the natural image, which is based on the gradient-intensity correlation, is explored to build a parametric form of SCB. Experimental results validate that the SCB transform outperforms current similarity enhancement algorithms, and performs better than the state-of-the-art multispectral registration measures. Thanks to the generality of the statistical prior, the SCB transform is also applicable to various multimodal data such as flash/no-flash images and medical images.</description><subject>Algorithms</subject><subject>common measures</subject><subject>Computer vision</subject><subject>Consistency</subject><subject>gradient descent</subject><subject>image pyramid</subject><subject>Image registration</subject><subject>Medical imaging</subject><subject>multimodal image</subject><subject>Multispectral image</subject><subject>optimization</subject><subject>Registration</subject><subject>Similarity</subject><subject>similarity enhancement</subject><subject>structural consistency boosting</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEURoMoWKt7wc2A66k3j8ljqcVHoaLUug4xkylT2smYZBb996ZMcXUfnO9eOAjdYphhDOphvficESAwI0qCEuQMTbBiuARg5Dz3UIlSYKYu0VWMWwDMKswnaPXkfUxttym-UhhsGoIr5r6LbUyus4ei8aF4H3apjb2zKZhdYbp63Ox9ncfF3mxcsXKbnAgmtb67RheN2UV3c6pT9P3yvJ6_lcuP18X8cVlaonAquWJVRbARjHMwhlkMDRPS1fBjQDpjGioaQi2R1HLBKK04c5waYimvK2PpFN2Pd_vgfwcXk976IXT5pSZUYomFpDxTMFI2-BiDa3Qf2r0JB41BH83pbE4fzemTuRy5GyOtc-4fV8CoZIL-Ae14aho</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Cao, Si-Yuan</creator><creator>Shen, Hui-Liang</creator><creator>Chen, Shu-Jie</creator><creator>Li, Chunguang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3147-1553</orcidid><orcidid>https://orcid.org/0000-0001-8469-019X</orcidid></search><sort><creationdate>2020</creationdate><title>Boosting Structure Consistency for Multispectral and Multimodal Image Registration</title><author>Cao, Si-Yuan ; Shen, Hui-Liang ; Chen, Shu-Jie ; Li, Chunguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6945521a74660aa4c10f478ed0ba08eaaf37f23c283c67433564e63a2c36d5ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>common measures</topic><topic>Computer vision</topic><topic>Consistency</topic><topic>gradient descent</topic><topic>image pyramid</topic><topic>Image registration</topic><topic>Medical imaging</topic><topic>multimodal image</topic><topic>Multispectral image</topic><topic>optimization</topic><topic>Registration</topic><topic>Similarity</topic><topic>similarity enhancement</topic><topic>structural consistency boosting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Si-Yuan</creatorcontrib><creatorcontrib>Shen, Hui-Liang</creatorcontrib><creatorcontrib>Chen, Shu-Jie</creatorcontrib><creatorcontrib>Li, Chunguang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao, Si-Yuan</au><au>Shen, Hui-Liang</au><au>Chen, Shu-Jie</au><au>Li, Chunguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Structure Consistency for Multispectral and Multimodal Image Registration</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2020</date><risdate>2020</risdate><volume>29</volume><spage>5147</spage><epage>5162</epage><pages>5147-5162</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Multispectral imaging plays a vital role in the area of computer vision and computational photography. As spectral band images can be misaligned due to imaging device movement or alternation, image registration is necessary to avoid spectral information distortion. The current registration measures specialized for multispectral data are typically robust yet complex, requiring excessive computation. The common measures such as sum of squared differences (SSD) and sum of absolute differences (SAD) are computationally efficient whereas they perform poorly on multispectral data. To cope with this challenge, we propose a structure consistency boosting (SCB) transform that aims at boosting the structural similarity of multispectral images. With SCB, the common measures can be employed for multispectral image registration. The SCB transform exploits the fact that inherent edge structures maintain relative saliency locally despite the nonlinear variation between band images. A statistical prior of the natural image, which is based on the gradient-intensity correlation, is explored to build a parametric form of SCB. Experimental results validate that the SCB transform outperforms current similarity enhancement algorithms, and performs better than the state-of-the-art multispectral registration measures. Thanks to the generality of the statistical prior, the SCB transform is also applicable to various multimodal data such as flash/no-flash images and medical images.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIP.2020.2980972</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3147-1553</orcidid><orcidid>https://orcid.org/0000-0001-8469-019X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2020, Vol.29, p.5147-5162 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_ieee_primary_9043847 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms common measures Computer vision Consistency gradient descent image pyramid Image registration Medical imaging multimodal image Multispectral image optimization Registration Similarity similarity enhancement structural consistency boosting |
title | Boosting Structure Consistency for Multispectral and Multimodal Image Registration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Structure%20Consistency%20for%20Multispectral%20and%20Multimodal%20Image%20Registration&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Cao,%20Si-Yuan&rft.date=2020&rft.volume=29&rft.spage=5147&rft.epage=5162&rft.pages=5147-5162&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2020.2980972&rft_dat=%3Cproquest_RIE%3E2381817836%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2381817836&rft_id=info:pmid/&rft_ieee_id=9043847&rfr_iscdi=true |