Human Detection Based on Time-Varying Signature on Range-Doppler Diagram Using Deep Neural Networks

We propose the detection of humans using millimeter-wave FMCW radar based on time-varying signatures of range-Doppler diagrams using deep recurrent neural networks (DRNNs). Demand for human detection is increasing for security, surveillance, and search and rescue purposes, recently, with a particula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2021-03, Vol.18 (3), p.426-430
Hauptverfasser: Kim, Youngwook, Alnujaim, Ibrahim, You, Sungjin, Jeong, Byung Jang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue 3
container_start_page 426
container_title IEEE geoscience and remote sensing letters
container_volume 18
creator Kim, Youngwook
Alnujaim, Ibrahim
You, Sungjin
Jeong, Byung Jang
description We propose the detection of humans using millimeter-wave FMCW radar based on time-varying signatures of range-Doppler diagrams using deep recurrent neural networks (DRNNs). Demand for human detection is increasing for security, surveillance, and search and rescue purposes, recently, with a particular focus on urban areas filled with clutter and moving targets. We suggest the classification of targets based on their signatures in range-Doppler plots with time because the signatures can be consecutively observed. We measure five target types: humans, cars, cyclists, dogs, and road clutter using millimeter-wave FMCW radar that transmits fast chirps at 77 GHz. To maximize the classification accuracy using the time-varying range-Doppler signatures of the targets, we investigate and compare the performance of 2-D-deep convolutional neural networks (DCNN), 3-D-DCNN, and DRNN along with 2-D-DCNN. The DRNN plus 2-D-DCNN showed the best performance, and the classification accuracy yields 99%, with the human classification rate of 100%.
doi_str_mv 10.1109/LGRS.2020.2980320
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9043726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9043726</ieee_id><sourcerecordid>2493595262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a7fd77848a98c3101d943f44a218fee02488bf7db4baca41ab48da903566c77e3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFZ_gLgJuE6dZ2ZmqUZboSj0Ie6GSXITUpuHMwnivzexxdU9cL9zHweha4JnhGB9t5yv1jOKKZ5RrTCj-ARNiBAqxEKS01FzEQqtPs7Rhfc7jClXSk5QuugrWwcxdJB2ZVMHD9ZDFgxiU1YQvlv3U9ZFsC6L2na9g7GzsnUBYdy07R5cEJe2cLYKtn4EY4A2eIXe2f1Quu_GffpLdJbbvYerY52i7fPT5nERLt_mL4_3yzClmnWhlXkmpeLKapUygkmmOcs5t5SoHODv4iSXWcITm1pObMJVZjVmIopSKYFN0e1hbuuarx58Z3ZN7-phpaFcM6EFjehAkQOVusZ7B7lpXVkNfxqCzZilGbM0Y5bmmOXguTl4SgD45zXmTNKI_QIUGG_-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493595262</pqid></control><display><type>article</type><title>Human Detection Based on Time-Varying Signature on Range-Doppler Diagram Using Deep Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Youngwook ; Alnujaim, Ibrahim ; You, Sungjin ; Jeong, Byung Jang</creator><creatorcontrib>Kim, Youngwook ; Alnujaim, Ibrahim ; You, Sungjin ; Jeong, Byung Jang</creatorcontrib><description>We propose the detection of humans using millimeter-wave FMCW radar based on time-varying signatures of range-Doppler diagrams using deep recurrent neural networks (DRNNs). Demand for human detection is increasing for security, surveillance, and search and rescue purposes, recently, with a particular focus on urban areas filled with clutter and moving targets. We suggest the classification of targets based on their signatures in range-Doppler plots with time because the signatures can be consecutively observed. We measure five target types: humans, cars, cyclists, dogs, and road clutter using millimeter-wave FMCW radar that transmits fast chirps at 77 GHz. To maximize the classification accuracy using the time-varying range-Doppler signatures of the targets, we investigate and compare the performance of 2-D-deep convolutional neural networks (DCNN), 3-D-DCNN, and DRNN along with 2-D-DCNN. The DRNN plus 2-D-DCNN showed the best performance, and the classification accuracy yields 99%, with the human classification rate of 100%.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2020.2980320</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Automobiles ; Classification ; Clutter ; Deep convolutional neural networks (DCNN) ; Detection ; Dogs ; Doppler effect ; Doppler sonar ; Feature extraction ; FMCW radar ; human detection ; Millimeter waves ; Moving targets ; Neural networks ; Radar ; Radar detection ; Radar signatures ; range-Doppler diagram ; Recurrent neural networks ; Search and rescue ; Security ; Urban areas</subject><ispartof>IEEE geoscience and remote sensing letters, 2021-03, Vol.18 (3), p.426-430</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a7fd77848a98c3101d943f44a218fee02488bf7db4baca41ab48da903566c77e3</citedby><cites>FETCH-LOGICAL-c293t-a7fd77848a98c3101d943f44a218fee02488bf7db4baca41ab48da903566c77e3</cites><orcidid>0000-0002-4067-6254 ; 0000-0003-3606-0593 ; 0000-0001-5610-0631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9043726$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9043726$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Youngwook</creatorcontrib><creatorcontrib>Alnujaim, Ibrahim</creatorcontrib><creatorcontrib>You, Sungjin</creatorcontrib><creatorcontrib>Jeong, Byung Jang</creatorcontrib><title>Human Detection Based on Time-Varying Signature on Range-Doppler Diagram Using Deep Neural Networks</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>We propose the detection of humans using millimeter-wave FMCW radar based on time-varying signatures of range-Doppler diagrams using deep recurrent neural networks (DRNNs). Demand for human detection is increasing for security, surveillance, and search and rescue purposes, recently, with a particular focus on urban areas filled with clutter and moving targets. We suggest the classification of targets based on their signatures in range-Doppler plots with time because the signatures can be consecutively observed. We measure five target types: humans, cars, cyclists, dogs, and road clutter using millimeter-wave FMCW radar that transmits fast chirps at 77 GHz. To maximize the classification accuracy using the time-varying range-Doppler signatures of the targets, we investigate and compare the performance of 2-D-deep convolutional neural networks (DCNN), 3-D-DCNN, and DRNN along with 2-D-DCNN. The DRNN plus 2-D-DCNN showed the best performance, and the classification accuracy yields 99%, with the human classification rate of 100%.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Automobiles</subject><subject>Classification</subject><subject>Clutter</subject><subject>Deep convolutional neural networks (DCNN)</subject><subject>Detection</subject><subject>Dogs</subject><subject>Doppler effect</subject><subject>Doppler sonar</subject><subject>Feature extraction</subject><subject>FMCW radar</subject><subject>human detection</subject><subject>Millimeter waves</subject><subject>Moving targets</subject><subject>Neural networks</subject><subject>Radar</subject><subject>Radar detection</subject><subject>Radar signatures</subject><subject>range-Doppler diagram</subject><subject>Recurrent neural networks</subject><subject>Search and rescue</subject><subject>Security</subject><subject>Urban areas</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsFZ_gLgJuE6dZ2ZmqUZboSj0Ie6GSXITUpuHMwnivzexxdU9cL9zHweha4JnhGB9t5yv1jOKKZ5RrTCj-ARNiBAqxEKS01FzEQqtPs7Rhfc7jClXSk5QuugrWwcxdJB2ZVMHD9ZDFgxiU1YQvlv3U9ZFsC6L2na9g7GzsnUBYdy07R5cEJe2cLYKtn4EY4A2eIXe2f1Quu_GffpLdJbbvYerY52i7fPT5nERLt_mL4_3yzClmnWhlXkmpeLKapUygkmmOcs5t5SoHODv4iSXWcITm1pObMJVZjVmIopSKYFN0e1hbuuarx58Z3ZN7-phpaFcM6EFjehAkQOVusZ7B7lpXVkNfxqCzZilGbM0Y5bmmOXguTl4SgD45zXmTNKI_QIUGG_-</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Kim, Youngwook</creator><creator>Alnujaim, Ibrahim</creator><creator>You, Sungjin</creator><creator>Jeong, Byung Jang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4067-6254</orcidid><orcidid>https://orcid.org/0000-0003-3606-0593</orcidid><orcidid>https://orcid.org/0000-0001-5610-0631</orcidid></search><sort><creationdate>20210301</creationdate><title>Human Detection Based on Time-Varying Signature on Range-Doppler Diagram Using Deep Neural Networks</title><author>Kim, Youngwook ; Alnujaim, Ibrahim ; You, Sungjin ; Jeong, Byung Jang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a7fd77848a98c3101d943f44a218fee02488bf7db4baca41ab48da903566c77e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Automobiles</topic><topic>Classification</topic><topic>Clutter</topic><topic>Deep convolutional neural networks (DCNN)</topic><topic>Detection</topic><topic>Dogs</topic><topic>Doppler effect</topic><topic>Doppler sonar</topic><topic>Feature extraction</topic><topic>FMCW radar</topic><topic>human detection</topic><topic>Millimeter waves</topic><topic>Moving targets</topic><topic>Neural networks</topic><topic>Radar</topic><topic>Radar detection</topic><topic>Radar signatures</topic><topic>range-Doppler diagram</topic><topic>Recurrent neural networks</topic><topic>Search and rescue</topic><topic>Security</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Youngwook</creatorcontrib><creatorcontrib>Alnujaim, Ibrahim</creatorcontrib><creatorcontrib>You, Sungjin</creatorcontrib><creatorcontrib>Jeong, Byung Jang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Youngwook</au><au>Alnujaim, Ibrahim</au><au>You, Sungjin</au><au>Jeong, Byung Jang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human Detection Based on Time-Varying Signature on Range-Doppler Diagram Using Deep Neural Networks</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>18</volume><issue>3</issue><spage>426</spage><epage>430</epage><pages>426-430</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>We propose the detection of humans using millimeter-wave FMCW radar based on time-varying signatures of range-Doppler diagrams using deep recurrent neural networks (DRNNs). Demand for human detection is increasing for security, surveillance, and search and rescue purposes, recently, with a particular focus on urban areas filled with clutter and moving targets. We suggest the classification of targets based on their signatures in range-Doppler plots with time because the signatures can be consecutively observed. We measure five target types: humans, cars, cyclists, dogs, and road clutter using millimeter-wave FMCW radar that transmits fast chirps at 77 GHz. To maximize the classification accuracy using the time-varying range-Doppler signatures of the targets, we investigate and compare the performance of 2-D-deep convolutional neural networks (DCNN), 3-D-DCNN, and DRNN along with 2-D-DCNN. The DRNN plus 2-D-DCNN showed the best performance, and the classification accuracy yields 99%, with the human classification rate of 100%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2020.2980320</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4067-6254</orcidid><orcidid>https://orcid.org/0000-0003-3606-0593</orcidid><orcidid>https://orcid.org/0000-0001-5610-0631</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2021-03, Vol.18 (3), p.426-430
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_9043726
source IEEE Electronic Library (IEL)
subjects Accuracy
Artificial neural networks
Automobiles
Classification
Clutter
Deep convolutional neural networks (DCNN)
Detection
Dogs
Doppler effect
Doppler sonar
Feature extraction
FMCW radar
human detection
Millimeter waves
Moving targets
Neural networks
Radar
Radar detection
Radar signatures
range-Doppler diagram
Recurrent neural networks
Search and rescue
Security
Urban areas
title Human Detection Based on Time-Varying Signature on Range-Doppler Diagram Using Deep Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20Detection%20Based%20on%20Time-Varying%20Signature%20on%20Range-Doppler%20Diagram%20Using%20Deep%20Neural%20Networks&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Kim,%20Youngwook&rft.date=2021-03-01&rft.volume=18&rft.issue=3&rft.spage=426&rft.epage=430&rft.pages=426-430&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2020.2980320&rft_dat=%3Cproquest_RIE%3E2493595262%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493595262&rft_id=info:pmid/&rft_ieee_id=9043726&rfr_iscdi=true