Price Incentive-Based Charging Navigation Strategy for Electric Vehicles

With rapid development of the electric vehicle (EV) industry, charging infrastructures are built fast. However, the unreasonable deployments with increasing EVs contribute to a long queuing time for charging demand of EVs, especially in the peak hours. How to navigate a specific EV to economically s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2020-09, Vol.56 (5), p.5762-5774
Hauptverfasser: Li, Xuecheng, Xiang, Yue, Lyu, Lin, Ji, Chenlin, Zhang, Qian, Teng, Fei, Liu, Youbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5774
container_issue 5
container_start_page 5762
container_title IEEE transactions on industry applications
container_volume 56
creator Li, Xuecheng
Xiang, Yue
Lyu, Lin
Ji, Chenlin
Zhang, Qian
Teng, Fei
Liu, Youbo
description With rapid development of the electric vehicle (EV) industry, charging infrastructures are built fast. However, the unreasonable deployments with increasing EVs contribute to a long queuing time for charging demand of EVs, especially in the peak hours. How to navigate a specific EV to economically satisfy its charging demand, while relieve the traffic burden, is an urgent problem. To address that, a price incentive-based charging navigation strategy for EVs is proposed. Unlike previous charging navigation studies that mainly focus on the EVs-transportation-power systems modeling, it considers the spatial-temporal influence of EVs' charging decision, especially the simultaneous charging requests. Specifically, the charging navigation framework with the collaborative working mode of EV-charging station-information exchange center-intelligent transportation system is established first. Following this, spatiotemporal distribution of the charging demand is obtained through the origin-destination analysis. After this, an event-driven dynamic queue model is constructed. It contributes to the modeling of the charging strategy, together with the proposed reservation opportunity cost mechanism. Finally, the simulation results indicate that the presented charging navigation strategy can not only reduce the EV's charging cost but also improve the utilization rate of charging facilities, which verify its effectiveness.
doi_str_mv 10.1109/TIA.2020.2981275
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9040425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9040425</ieee_id><sourcerecordid>2444617536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-ea053700750d113ba98de5df4233f40a54e457542975f836a40e3106748403023</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvBc-dL8tI0xznUDYYKTq8htq9dxmxn0g3239ux4eldvu_34GPslsOIczAPi9l4JEDASJicC63O2IAbaVIjM33OBgBGpsYYvGRXMa4AOCqOAzZ9D76gZNYU1HR-R-mji1Qmk6ULtW_q5NXtfO063zbJRxdcR_U-qdqQPK2p6Ho1-aKlL9YUr9lF5daRbk53yD6fnxaTaTp_e5lNxvO0kDLvUnKgpAbQCkrO5bczeUmqrFBIWSE4hYRKKxRGqyqXmUMgySHTmCNIEHLI7o-7m9D-bil2dtVuQ9O_tAIRM66VzHoKjlQR2hgDVXYT_I8Le8vBHnrZvpc99LKnXr1yd1Q8Ef3jBhBQKPkHQtVj2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444617536</pqid></control><display><type>article</type><title>Price Incentive-Based Charging Navigation Strategy for Electric Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xuecheng ; Xiang, Yue ; Lyu, Lin ; Ji, Chenlin ; Zhang, Qian ; Teng, Fei ; Liu, Youbo</creator><creatorcontrib>Li, Xuecheng ; Xiang, Yue ; Lyu, Lin ; Ji, Chenlin ; Zhang, Qian ; Teng, Fei ; Liu, Youbo</creatorcontrib><description>With rapid development of the electric vehicle (EV) industry, charging infrastructures are built fast. However, the unreasonable deployments with increasing EVs contribute to a long queuing time for charging demand of EVs, especially in the peak hours. How to navigate a specific EV to economically satisfy its charging demand, while relieve the traffic burden, is an urgent problem. To address that, a price incentive-based charging navigation strategy for EVs is proposed. Unlike previous charging navigation studies that mainly focus on the EVs-transportation-power systems modeling, it considers the spatial-temporal influence of EVs' charging decision, especially the simultaneous charging requests. Specifically, the charging navigation framework with the collaborative working mode of EV-charging station-information exchange center-intelligent transportation system is established first. Following this, spatiotemporal distribution of the charging demand is obtained through the origin-destination analysis. After this, an event-driven dynamic queue model is constructed. It contributes to the modeling of the charging strategy, together with the proposed reservation opportunity cost mechanism. Finally, the simulation results indicate that the presented charging navigation strategy can not only reduce the EV's charging cost but also improve the utilization rate of charging facilities, which verify its effectiveness.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2020.2981275</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Charging navigation ; Charging stations ; Computer simulation ; Demand ; dynamic queue ; Electric power systems ; electric vehicle (EV) ; Electric vehicle charging ; Electric vehicles ; IEC ; Intelligent transportation systems ; Modelling ; Navigation ; price incentive ; Pricing ; reservation opportunity cost ; Strategy ; Vehicle dynamics</subject><ispartof>IEEE transactions on industry applications, 2020-09, Vol.56 (5), p.5762-5774</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-ea053700750d113ba98de5df4233f40a54e457542975f836a40e3106748403023</citedby><cites>FETCH-LOGICAL-c338t-ea053700750d113ba98de5df4233f40a54e457542975f836a40e3106748403023</cites><orcidid>0000-0002-5465-5243 ; 0000-0001-6189-5045 ; 0000-0002-6828-0294 ; 0000-0001-8456-1195 ; 0000-0001-5487-0173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9040425$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9040425$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Xuecheng</creatorcontrib><creatorcontrib>Xiang, Yue</creatorcontrib><creatorcontrib>Lyu, Lin</creatorcontrib><creatorcontrib>Ji, Chenlin</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Teng, Fei</creatorcontrib><creatorcontrib>Liu, Youbo</creatorcontrib><title>Price Incentive-Based Charging Navigation Strategy for Electric Vehicles</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>With rapid development of the electric vehicle (EV) industry, charging infrastructures are built fast. However, the unreasonable deployments with increasing EVs contribute to a long queuing time for charging demand of EVs, especially in the peak hours. How to navigate a specific EV to economically satisfy its charging demand, while relieve the traffic burden, is an urgent problem. To address that, a price incentive-based charging navigation strategy for EVs is proposed. Unlike previous charging navigation studies that mainly focus on the EVs-transportation-power systems modeling, it considers the spatial-temporal influence of EVs' charging decision, especially the simultaneous charging requests. Specifically, the charging navigation framework with the collaborative working mode of EV-charging station-information exchange center-intelligent transportation system is established first. Following this, spatiotemporal distribution of the charging demand is obtained through the origin-destination analysis. After this, an event-driven dynamic queue model is constructed. It contributes to the modeling of the charging strategy, together with the proposed reservation opportunity cost mechanism. Finally, the simulation results indicate that the presented charging navigation strategy can not only reduce the EV's charging cost but also improve the utilization rate of charging facilities, which verify its effectiveness.</description><subject>Charging navigation</subject><subject>Charging stations</subject><subject>Computer simulation</subject><subject>Demand</subject><subject>dynamic queue</subject><subject>Electric power systems</subject><subject>electric vehicle (EV)</subject><subject>Electric vehicle charging</subject><subject>Electric vehicles</subject><subject>IEC</subject><subject>Intelligent transportation systems</subject><subject>Modelling</subject><subject>Navigation</subject><subject>price incentive</subject><subject>Pricing</subject><subject>reservation opportunity cost</subject><subject>Strategy</subject><subject>Vehicle dynamics</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvBc-dL8tI0xznUDYYKTq8htq9dxmxn0g3239ux4eldvu_34GPslsOIczAPi9l4JEDASJicC63O2IAbaVIjM33OBgBGpsYYvGRXMa4AOCqOAzZ9D76gZNYU1HR-R-mji1Qmk6ULtW_q5NXtfO063zbJRxdcR_U-qdqQPK2p6Ho1-aKlL9YUr9lF5daRbk53yD6fnxaTaTp_e5lNxvO0kDLvUnKgpAbQCkrO5bczeUmqrFBIWSE4hYRKKxRGqyqXmUMgySHTmCNIEHLI7o-7m9D-bil2dtVuQ9O_tAIRM66VzHoKjlQR2hgDVXYT_I8Le8vBHnrZvpc99LKnXr1yd1Q8Ef3jBhBQKPkHQtVj2w</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Li, Xuecheng</creator><creator>Xiang, Yue</creator><creator>Lyu, Lin</creator><creator>Ji, Chenlin</creator><creator>Zhang, Qian</creator><creator>Teng, Fei</creator><creator>Liu, Youbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5465-5243</orcidid><orcidid>https://orcid.org/0000-0001-6189-5045</orcidid><orcidid>https://orcid.org/0000-0002-6828-0294</orcidid><orcidid>https://orcid.org/0000-0001-8456-1195</orcidid><orcidid>https://orcid.org/0000-0001-5487-0173</orcidid></search><sort><creationdate>202009</creationdate><title>Price Incentive-Based Charging Navigation Strategy for Electric Vehicles</title><author>Li, Xuecheng ; Xiang, Yue ; Lyu, Lin ; Ji, Chenlin ; Zhang, Qian ; Teng, Fei ; Liu, Youbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-ea053700750d113ba98de5df4233f40a54e457542975f836a40e3106748403023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charging navigation</topic><topic>Charging stations</topic><topic>Computer simulation</topic><topic>Demand</topic><topic>dynamic queue</topic><topic>Electric power systems</topic><topic>electric vehicle (EV)</topic><topic>Electric vehicle charging</topic><topic>Electric vehicles</topic><topic>IEC</topic><topic>Intelligent transportation systems</topic><topic>Modelling</topic><topic>Navigation</topic><topic>price incentive</topic><topic>Pricing</topic><topic>reservation opportunity cost</topic><topic>Strategy</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuecheng</creatorcontrib><creatorcontrib>Xiang, Yue</creatorcontrib><creatorcontrib>Lyu, Lin</creatorcontrib><creatorcontrib>Ji, Chenlin</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Teng, Fei</creatorcontrib><creatorcontrib>Liu, Youbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xuecheng</au><au>Xiang, Yue</au><au>Lyu, Lin</au><au>Ji, Chenlin</au><au>Zhang, Qian</au><au>Teng, Fei</au><au>Liu, Youbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Price Incentive-Based Charging Navigation Strategy for Electric Vehicles</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2020-09</date><risdate>2020</risdate><volume>56</volume><issue>5</issue><spage>5762</spage><epage>5774</epage><pages>5762-5774</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>With rapid development of the electric vehicle (EV) industry, charging infrastructures are built fast. However, the unreasonable deployments with increasing EVs contribute to a long queuing time for charging demand of EVs, especially in the peak hours. How to navigate a specific EV to economically satisfy its charging demand, while relieve the traffic burden, is an urgent problem. To address that, a price incentive-based charging navigation strategy for EVs is proposed. Unlike previous charging navigation studies that mainly focus on the EVs-transportation-power systems modeling, it considers the spatial-temporal influence of EVs' charging decision, especially the simultaneous charging requests. Specifically, the charging navigation framework with the collaborative working mode of EV-charging station-information exchange center-intelligent transportation system is established first. Following this, spatiotemporal distribution of the charging demand is obtained through the origin-destination analysis. After this, an event-driven dynamic queue model is constructed. It contributes to the modeling of the charging strategy, together with the proposed reservation opportunity cost mechanism. Finally, the simulation results indicate that the presented charging navigation strategy can not only reduce the EV's charging cost but also improve the utilization rate of charging facilities, which verify its effectiveness.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2020.2981275</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5465-5243</orcidid><orcidid>https://orcid.org/0000-0001-6189-5045</orcidid><orcidid>https://orcid.org/0000-0002-6828-0294</orcidid><orcidid>https://orcid.org/0000-0001-8456-1195</orcidid><orcidid>https://orcid.org/0000-0001-5487-0173</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2020-09, Vol.56 (5), p.5762-5774
issn 0093-9994
1939-9367
language eng
recordid cdi_ieee_primary_9040425
source IEEE Electronic Library (IEL)
subjects Charging navigation
Charging stations
Computer simulation
Demand
dynamic queue
Electric power systems
electric vehicle (EV)
Electric vehicle charging
Electric vehicles
IEC
Intelligent transportation systems
Modelling
Navigation
price incentive
Pricing
reservation opportunity cost
Strategy
Vehicle dynamics
title Price Incentive-Based Charging Navigation Strategy for Electric Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Price%20Incentive-Based%20Charging%20Navigation%20Strategy%20for%20Electric%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Li,%20Xuecheng&rft.date=2020-09&rft.volume=56&rft.issue=5&rft.spage=5762&rft.epage=5774&rft.pages=5762-5774&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2020.2981275&rft_dat=%3Cproquest_RIE%3E2444617536%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444617536&rft_id=info:pmid/&rft_ieee_id=9040425&rfr_iscdi=true