Price Incentive-Based Charging Navigation Strategy for Electric Vehicles
With rapid development of the electric vehicle (EV) industry, charging infrastructures are built fast. However, the unreasonable deployments with increasing EVs contribute to a long queuing time for charging demand of EVs, especially in the peak hours. How to navigate a specific EV to economically s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2020-09, Vol.56 (5), p.5762-5774 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5774 |
---|---|
container_issue | 5 |
container_start_page | 5762 |
container_title | IEEE transactions on industry applications |
container_volume | 56 |
creator | Li, Xuecheng Xiang, Yue Lyu, Lin Ji, Chenlin Zhang, Qian Teng, Fei Liu, Youbo |
description | With rapid development of the electric vehicle (EV) industry, charging infrastructures are built fast. However, the unreasonable deployments with increasing EVs contribute to a long queuing time for charging demand of EVs, especially in the peak hours. How to navigate a specific EV to economically satisfy its charging demand, while relieve the traffic burden, is an urgent problem. To address that, a price incentive-based charging navigation strategy for EVs is proposed. Unlike previous charging navigation studies that mainly focus on the EVs-transportation-power systems modeling, it considers the spatial-temporal influence of EVs' charging decision, especially the simultaneous charging requests. Specifically, the charging navigation framework with the collaborative working mode of EV-charging station-information exchange center-intelligent transportation system is established first. Following this, spatiotemporal distribution of the charging demand is obtained through the origin-destination analysis. After this, an event-driven dynamic queue model is constructed. It contributes to the modeling of the charging strategy, together with the proposed reservation opportunity cost mechanism. Finally, the simulation results indicate that the presented charging navigation strategy can not only reduce the EV's charging cost but also improve the utilization rate of charging facilities, which verify its effectiveness. |
doi_str_mv | 10.1109/TIA.2020.2981275 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9040425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9040425</ieee_id><sourcerecordid>2444617536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-ea053700750d113ba98de5df4233f40a54e457542975f836a40e3106748403023</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvBc-dL8tI0xznUDYYKTq8htq9dxmxn0g3239ux4eldvu_34GPslsOIczAPi9l4JEDASJicC63O2IAbaVIjM33OBgBGpsYYvGRXMa4AOCqOAzZ9D76gZNYU1HR-R-mji1Qmk6ULtW_q5NXtfO063zbJRxdcR_U-qdqQPK2p6Ho1-aKlL9YUr9lF5daRbk53yD6fnxaTaTp_e5lNxvO0kDLvUnKgpAbQCkrO5bczeUmqrFBIWSE4hYRKKxRGqyqXmUMgySHTmCNIEHLI7o-7m9D-bil2dtVuQ9O_tAIRM66VzHoKjlQR2hgDVXYT_I8Le8vBHnrZvpc99LKnXr1yd1Q8Ef3jBhBQKPkHQtVj2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444617536</pqid></control><display><type>article</type><title>Price Incentive-Based Charging Navigation Strategy for Electric Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xuecheng ; Xiang, Yue ; Lyu, Lin ; Ji, Chenlin ; Zhang, Qian ; Teng, Fei ; Liu, Youbo</creator><creatorcontrib>Li, Xuecheng ; Xiang, Yue ; Lyu, Lin ; Ji, Chenlin ; Zhang, Qian ; Teng, Fei ; Liu, Youbo</creatorcontrib><description>With rapid development of the electric vehicle (EV) industry, charging infrastructures are built fast. However, the unreasonable deployments with increasing EVs contribute to a long queuing time for charging demand of EVs, especially in the peak hours. How to navigate a specific EV to economically satisfy its charging demand, while relieve the traffic burden, is an urgent problem. To address that, a price incentive-based charging navigation strategy for EVs is proposed. Unlike previous charging navigation studies that mainly focus on the EVs-transportation-power systems modeling, it considers the spatial-temporal influence of EVs' charging decision, especially the simultaneous charging requests. Specifically, the charging navigation framework with the collaborative working mode of EV-charging station-information exchange center-intelligent transportation system is established first. Following this, spatiotemporal distribution of the charging demand is obtained through the origin-destination analysis. After this, an event-driven dynamic queue model is constructed. It contributes to the modeling of the charging strategy, together with the proposed reservation opportunity cost mechanism. Finally, the simulation results indicate that the presented charging navigation strategy can not only reduce the EV's charging cost but also improve the utilization rate of charging facilities, which verify its effectiveness.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2020.2981275</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Charging navigation ; Charging stations ; Computer simulation ; Demand ; dynamic queue ; Electric power systems ; electric vehicle (EV) ; Electric vehicle charging ; Electric vehicles ; IEC ; Intelligent transportation systems ; Modelling ; Navigation ; price incentive ; Pricing ; reservation opportunity cost ; Strategy ; Vehicle dynamics</subject><ispartof>IEEE transactions on industry applications, 2020-09, Vol.56 (5), p.5762-5774</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-ea053700750d113ba98de5df4233f40a54e457542975f836a40e3106748403023</citedby><cites>FETCH-LOGICAL-c338t-ea053700750d113ba98de5df4233f40a54e457542975f836a40e3106748403023</cites><orcidid>0000-0002-5465-5243 ; 0000-0001-6189-5045 ; 0000-0002-6828-0294 ; 0000-0001-8456-1195 ; 0000-0001-5487-0173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9040425$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9040425$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Xuecheng</creatorcontrib><creatorcontrib>Xiang, Yue</creatorcontrib><creatorcontrib>Lyu, Lin</creatorcontrib><creatorcontrib>Ji, Chenlin</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Teng, Fei</creatorcontrib><creatorcontrib>Liu, Youbo</creatorcontrib><title>Price Incentive-Based Charging Navigation Strategy for Electric Vehicles</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>With rapid development of the electric vehicle (EV) industry, charging infrastructures are built fast. However, the unreasonable deployments with increasing EVs contribute to a long queuing time for charging demand of EVs, especially in the peak hours. How to navigate a specific EV to economically satisfy its charging demand, while relieve the traffic burden, is an urgent problem. To address that, a price incentive-based charging navigation strategy for EVs is proposed. Unlike previous charging navigation studies that mainly focus on the EVs-transportation-power systems modeling, it considers the spatial-temporal influence of EVs' charging decision, especially the simultaneous charging requests. Specifically, the charging navigation framework with the collaborative working mode of EV-charging station-information exchange center-intelligent transportation system is established first. Following this, spatiotemporal distribution of the charging demand is obtained through the origin-destination analysis. After this, an event-driven dynamic queue model is constructed. It contributes to the modeling of the charging strategy, together with the proposed reservation opportunity cost mechanism. Finally, the simulation results indicate that the presented charging navigation strategy can not only reduce the EV's charging cost but also improve the utilization rate of charging facilities, which verify its effectiveness.</description><subject>Charging navigation</subject><subject>Charging stations</subject><subject>Computer simulation</subject><subject>Demand</subject><subject>dynamic queue</subject><subject>Electric power systems</subject><subject>electric vehicle (EV)</subject><subject>Electric vehicle charging</subject><subject>Electric vehicles</subject><subject>IEC</subject><subject>Intelligent transportation systems</subject><subject>Modelling</subject><subject>Navigation</subject><subject>price incentive</subject><subject>Pricing</subject><subject>reservation opportunity cost</subject><subject>Strategy</subject><subject>Vehicle dynamics</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvBc-dL8tI0xznUDYYKTq8htq9dxmxn0g3239ux4eldvu_34GPslsOIczAPi9l4JEDASJicC63O2IAbaVIjM33OBgBGpsYYvGRXMa4AOCqOAzZ9D76gZNYU1HR-R-mji1Qmk6ULtW_q5NXtfO063zbJRxdcR_U-qdqQPK2p6Ho1-aKlL9YUr9lF5daRbk53yD6fnxaTaTp_e5lNxvO0kDLvUnKgpAbQCkrO5bczeUmqrFBIWSE4hYRKKxRGqyqXmUMgySHTmCNIEHLI7o-7m9D-bil2dtVuQ9O_tAIRM66VzHoKjlQR2hgDVXYT_I8Le8vBHnrZvpc99LKnXr1yd1Q8Ef3jBhBQKPkHQtVj2w</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Li, Xuecheng</creator><creator>Xiang, Yue</creator><creator>Lyu, Lin</creator><creator>Ji, Chenlin</creator><creator>Zhang, Qian</creator><creator>Teng, Fei</creator><creator>Liu, Youbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5465-5243</orcidid><orcidid>https://orcid.org/0000-0001-6189-5045</orcidid><orcidid>https://orcid.org/0000-0002-6828-0294</orcidid><orcidid>https://orcid.org/0000-0001-8456-1195</orcidid><orcidid>https://orcid.org/0000-0001-5487-0173</orcidid></search><sort><creationdate>202009</creationdate><title>Price Incentive-Based Charging Navigation Strategy for Electric Vehicles</title><author>Li, Xuecheng ; Xiang, Yue ; Lyu, Lin ; Ji, Chenlin ; Zhang, Qian ; Teng, Fei ; Liu, Youbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-ea053700750d113ba98de5df4233f40a54e457542975f836a40e3106748403023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charging navigation</topic><topic>Charging stations</topic><topic>Computer simulation</topic><topic>Demand</topic><topic>dynamic queue</topic><topic>Electric power systems</topic><topic>electric vehicle (EV)</topic><topic>Electric vehicle charging</topic><topic>Electric vehicles</topic><topic>IEC</topic><topic>Intelligent transportation systems</topic><topic>Modelling</topic><topic>Navigation</topic><topic>price incentive</topic><topic>Pricing</topic><topic>reservation opportunity cost</topic><topic>Strategy</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuecheng</creatorcontrib><creatorcontrib>Xiang, Yue</creatorcontrib><creatorcontrib>Lyu, Lin</creatorcontrib><creatorcontrib>Ji, Chenlin</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Teng, Fei</creatorcontrib><creatorcontrib>Liu, Youbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xuecheng</au><au>Xiang, Yue</au><au>Lyu, Lin</au><au>Ji, Chenlin</au><au>Zhang, Qian</au><au>Teng, Fei</au><au>Liu, Youbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Price Incentive-Based Charging Navigation Strategy for Electric Vehicles</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2020-09</date><risdate>2020</risdate><volume>56</volume><issue>5</issue><spage>5762</spage><epage>5774</epage><pages>5762-5774</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>With rapid development of the electric vehicle (EV) industry, charging infrastructures are built fast. However, the unreasonable deployments with increasing EVs contribute to a long queuing time for charging demand of EVs, especially in the peak hours. How to navigate a specific EV to economically satisfy its charging demand, while relieve the traffic burden, is an urgent problem. To address that, a price incentive-based charging navigation strategy for EVs is proposed. Unlike previous charging navigation studies that mainly focus on the EVs-transportation-power systems modeling, it considers the spatial-temporal influence of EVs' charging decision, especially the simultaneous charging requests. Specifically, the charging navigation framework with the collaborative working mode of EV-charging station-information exchange center-intelligent transportation system is established first. Following this, spatiotemporal distribution of the charging demand is obtained through the origin-destination analysis. After this, an event-driven dynamic queue model is constructed. It contributes to the modeling of the charging strategy, together with the proposed reservation opportunity cost mechanism. Finally, the simulation results indicate that the presented charging navigation strategy can not only reduce the EV's charging cost but also improve the utilization rate of charging facilities, which verify its effectiveness.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2020.2981275</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5465-5243</orcidid><orcidid>https://orcid.org/0000-0001-6189-5045</orcidid><orcidid>https://orcid.org/0000-0002-6828-0294</orcidid><orcidid>https://orcid.org/0000-0001-8456-1195</orcidid><orcidid>https://orcid.org/0000-0001-5487-0173</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2020-09, Vol.56 (5), p.5762-5774 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_ieee_primary_9040425 |
source | IEEE Electronic Library (IEL) |
subjects | Charging navigation Charging stations Computer simulation Demand dynamic queue Electric power systems electric vehicle (EV) Electric vehicle charging Electric vehicles IEC Intelligent transportation systems Modelling Navigation price incentive Pricing reservation opportunity cost Strategy Vehicle dynamics |
title | Price Incentive-Based Charging Navigation Strategy for Electric Vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Price%20Incentive-Based%20Charging%20Navigation%20Strategy%20for%20Electric%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Li,%20Xuecheng&rft.date=2020-09&rft.volume=56&rft.issue=5&rft.spage=5762&rft.epage=5774&rft.pages=5762-5774&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2020.2981275&rft_dat=%3Cproquest_RIE%3E2444617536%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444617536&rft_id=info:pmid/&rft_ieee_id=9040425&rfr_iscdi=true |