Space-time measurement of indoor radio propagation

Most existing techniques for indoor radio propagation measurement do not resolve the angles from which signal components arrive at the receiving antenna. Knowledge of the angle-of-arrival is required for evaluation of evolving systems that employ smart antenna technology to provide features such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2001-02, Vol.50 (1), p.22-31
Hauptverfasser: Tingley, R.D., Pahlavan, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue 1
container_start_page 22
container_title IEEE transactions on instrumentation and measurement
container_volume 50
creator Tingley, R.D.
Pahlavan, K.
description Most existing techniques for indoor radio propagation measurement do not resolve the angles from which signal components arrive at the receiving antenna. Knowledge of the angle-of-arrival is required for evaluation of evolving systems that employ smart antenna technology to provide features such as geolocation, interference cancellation, and space-division multiplexing. This paper presents a novel technique for the joint measurement of the angles, times and complex amplitudes of discrete path arrivals in an indoor propagation environment. A data acquisition system, based upon a vector network analyzer and multichannel antenna array is described, together with its use to collect channel measurement matrices. The inherent error sources present in these measurement matrices are investigated using a compact indoor anechoic range. Two signal processing algorithms are presented whereby the channel parameters may be estimated from raw measurements. In the first approach, an optimum beamformer is derived which compensates for systematic errors in the data acquisition system. This approach features very low computational complexity, and delivers modest resolution of path components. The second algorithm is based upon the maximum likelihood criterion, using the measured calibration matrices as space-time basis functions. This algorithm provides super-resolution of all path parameters, at the cost of increased computation. Several example measurements are given, and future directions of our research are indicated.
doi_str_mv 10.1109/19.903874
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_903874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>903874</ieee_id><sourcerecordid>28625719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-accb227f6e5fd8718d744bcb6a47387f80ef598b810be2a2283ab079cfeeeb4a3</originalsourceid><addsrcrecordid>eNp90DtPwzAQB3ALgUQpDKxMEQOIIcV2HD9GVPGSKjEAs2U7Z5SqiYOdDHx7jFIxMDDdcD_d44_QOcErQrC6JWqlcCUFO0ALUteiVJzTQ7TAmMhSsZofo5OUthhjwZlYIPo6GAfl2HZQdGDSFKGDfiyCL9q-CSEW0TRtKIYYBvNhxjb0p-jIm12Cs31doveH-7f1U7l5eXxe321KV1V8LI1zllLhOdS-kYLIRjBmneWGiXyglxh8raSVBFughlJZGYuFch4ALDPVEl3Pc_PuzwnSqLs2OdjtTA9hSlplzDGpqiyv_pVUcloLojK8_AO3YYp9_kJLySRhBNOMbmbkYkgpgtdDbDsTvzTB-idkTZSeQ872YrZtPvrX7Zvflcl1-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884814102</pqid></control><display><type>article</type><title>Space-time measurement of indoor radio propagation</title><source>IEEE Electronic Library (IEL)</source><creator>Tingley, R.D. ; Pahlavan, K.</creator><creatorcontrib>Tingley, R.D. ; Pahlavan, K.</creatorcontrib><description>Most existing techniques for indoor radio propagation measurement do not resolve the angles from which signal components arrive at the receiving antenna. Knowledge of the angle-of-arrival is required for evaluation of evolving systems that employ smart antenna technology to provide features such as geolocation, interference cancellation, and space-division multiplexing. This paper presents a novel technique for the joint measurement of the angles, times and complex amplitudes of discrete path arrivals in an indoor propagation environment. A data acquisition system, based upon a vector network analyzer and multichannel antenna array is described, together with its use to collect channel measurement matrices. The inherent error sources present in these measurement matrices are investigated using a compact indoor anechoic range. Two signal processing algorithms are presented whereby the channel parameters may be estimated from raw measurements. In the first approach, an optimum beamformer is derived which compensates for systematic errors in the data acquisition system. This approach features very low computational complexity, and delivers modest resolution of path components. The second algorithm is based upon the maximum likelihood criterion, using the measured calibration matrices as space-time basis functions. This algorithm provides super-resolution of all path parameters, at the cost of increased computation. Several example measurements are given, and future directions of our research are indicated.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/19.903874</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antenna accessories ; Antenna measurements ; Antennas ; Antennas and propagation ; Channels ; Data acquisition ; Data acquisition systems ; Indoor ; Indoor radio communication ; Interference cancellation ; Mathematical analysis ; Matrices ; Matrix methods ; Propagation ; Radio ; Receiving antennas ; Signal processing algorithms ; Signal resolution ; Space technology ; Studies</subject><ispartof>IEEE transactions on instrumentation and measurement, 2001-02, Vol.50 (1), p.22-31</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-accb227f6e5fd8718d744bcb6a47387f80ef598b810be2a2283ab079cfeeeb4a3</citedby><cites>FETCH-LOGICAL-c336t-accb227f6e5fd8718d744bcb6a47387f80ef598b810be2a2283ab079cfeeeb4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/903874$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/903874$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tingley, R.D.</creatorcontrib><creatorcontrib>Pahlavan, K.</creatorcontrib><title>Space-time measurement of indoor radio propagation</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Most existing techniques for indoor radio propagation measurement do not resolve the angles from which signal components arrive at the receiving antenna. Knowledge of the angle-of-arrival is required for evaluation of evolving systems that employ smart antenna technology to provide features such as geolocation, interference cancellation, and space-division multiplexing. This paper presents a novel technique for the joint measurement of the angles, times and complex amplitudes of discrete path arrivals in an indoor propagation environment. A data acquisition system, based upon a vector network analyzer and multichannel antenna array is described, together with its use to collect channel measurement matrices. The inherent error sources present in these measurement matrices are investigated using a compact indoor anechoic range. Two signal processing algorithms are presented whereby the channel parameters may be estimated from raw measurements. In the first approach, an optimum beamformer is derived which compensates for systematic errors in the data acquisition system. This approach features very low computational complexity, and delivers modest resolution of path components. The second algorithm is based upon the maximum likelihood criterion, using the measured calibration matrices as space-time basis functions. This algorithm provides super-resolution of all path parameters, at the cost of increased computation. Several example measurements are given, and future directions of our research are indicated.</description><subject>Algorithms</subject><subject>Antenna accessories</subject><subject>Antenna measurements</subject><subject>Antennas</subject><subject>Antennas and propagation</subject><subject>Channels</subject><subject>Data acquisition</subject><subject>Data acquisition systems</subject><subject>Indoor</subject><subject>Indoor radio communication</subject><subject>Interference cancellation</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Propagation</subject><subject>Radio</subject><subject>Receiving antennas</subject><subject>Signal processing algorithms</subject><subject>Signal resolution</subject><subject>Space technology</subject><subject>Studies</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90DtPwzAQB3ALgUQpDKxMEQOIIcV2HD9GVPGSKjEAs2U7Z5SqiYOdDHx7jFIxMDDdcD_d44_QOcErQrC6JWqlcCUFO0ALUteiVJzTQ7TAmMhSsZofo5OUthhjwZlYIPo6GAfl2HZQdGDSFKGDfiyCL9q-CSEW0TRtKIYYBvNhxjb0p-jIm12Cs31doveH-7f1U7l5eXxe321KV1V8LI1zllLhOdS-kYLIRjBmneWGiXyglxh8raSVBFughlJZGYuFch4ALDPVEl3Pc_PuzwnSqLs2OdjtTA9hSlplzDGpqiyv_pVUcloLojK8_AO3YYp9_kJLySRhBNOMbmbkYkgpgtdDbDsTvzTB-idkTZSeQ872YrZtPvrX7Zvflcl1-A</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Tingley, R.D.</creator><creator>Pahlavan, K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010201</creationdate><title>Space-time measurement of indoor radio propagation</title><author>Tingley, R.D. ; Pahlavan, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-accb227f6e5fd8718d744bcb6a47387f80ef598b810be2a2283ab079cfeeeb4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Antenna accessories</topic><topic>Antenna measurements</topic><topic>Antennas</topic><topic>Antennas and propagation</topic><topic>Channels</topic><topic>Data acquisition</topic><topic>Data acquisition systems</topic><topic>Indoor</topic><topic>Indoor radio communication</topic><topic>Interference cancellation</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Propagation</topic><topic>Radio</topic><topic>Receiving antennas</topic><topic>Signal processing algorithms</topic><topic>Signal resolution</topic><topic>Space technology</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tingley, R.D.</creatorcontrib><creatorcontrib>Pahlavan, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tingley, R.D.</au><au>Pahlavan, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space-time measurement of indoor radio propagation</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2001-02-01</date><risdate>2001</risdate><volume>50</volume><issue>1</issue><spage>22</spage><epage>31</epage><pages>22-31</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Most existing techniques for indoor radio propagation measurement do not resolve the angles from which signal components arrive at the receiving antenna. Knowledge of the angle-of-arrival is required for evaluation of evolving systems that employ smart antenna technology to provide features such as geolocation, interference cancellation, and space-division multiplexing. This paper presents a novel technique for the joint measurement of the angles, times and complex amplitudes of discrete path arrivals in an indoor propagation environment. A data acquisition system, based upon a vector network analyzer and multichannel antenna array is described, together with its use to collect channel measurement matrices. The inherent error sources present in these measurement matrices are investigated using a compact indoor anechoic range. Two signal processing algorithms are presented whereby the channel parameters may be estimated from raw measurements. In the first approach, an optimum beamformer is derived which compensates for systematic errors in the data acquisition system. This approach features very low computational complexity, and delivers modest resolution of path components. The second algorithm is based upon the maximum likelihood criterion, using the measured calibration matrices as space-time basis functions. This algorithm provides super-resolution of all path parameters, at the cost of increased computation. Several example measurements are given, and future directions of our research are indicated.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/19.903874</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2001-02, Vol.50 (1), p.22-31
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_903874
source IEEE Electronic Library (IEL)
subjects Algorithms
Antenna accessories
Antenna measurements
Antennas
Antennas and propagation
Channels
Data acquisition
Data acquisition systems
Indoor
Indoor radio communication
Interference cancellation
Mathematical analysis
Matrices
Matrix methods
Propagation
Radio
Receiving antennas
Signal processing algorithms
Signal resolution
Space technology
Studies
title Space-time measurement of indoor radio propagation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T05%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space-time%20measurement%20of%20indoor%20radio%20propagation&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Tingley,%20R.D.&rft.date=2001-02-01&rft.volume=50&rft.issue=1&rft.spage=22&rft.epage=31&rft.pages=22-31&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/19.903874&rft_dat=%3Cproquest_RIE%3E28625719%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884814102&rft_id=info:pmid/&rft_ieee_id=903874&rfr_iscdi=true