An HMM-based approach for gesture segmentation and recognition
Gesture, as a "natural" means, provides an alternative way for human-computer interaction. The recognition of continuous gestures suffers greatly from the existence of non-gesture hand motions. The given gestures can start at any moment in an input sequence. The Hidden Markov model (HMM) i...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 682 vol.3 |
---|---|
container_issue | |
container_start_page | 679 |
container_title | |
container_volume | 3 |
creator | Deng, J.W. Tsui, H.T. |
description | Gesture, as a "natural" means, provides an alternative way for human-computer interaction. The recognition of continuous gestures suffers greatly from the existence of non-gesture hand motions. The given gestures can start at any moment in an input sequence. The Hidden Markov model (HMM) is used to tackle this problem. The paper proposes a method for the spotting and recognition of continuous spatio-temporal features. Without sliding the input temporal patterns past the trained models, the algorithm makes use of accumulation scores for evaluation. So it is an exhaustive evaluation method but only a sum operation is needed in each input frame. The method is demonstrated with real experiments on the recognition of some spatio-temporal trajectories. Results of the experiments show that the proposed method is very effective and fast in extracting given gestures from a continuous trajectory containing non-gestures. |
doi_str_mv | 10.1109/ICPR.2000.903636 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_903636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>903636</ieee_id><sourcerecordid>903636</sourcerecordid><originalsourceid>FETCH-LOGICAL-i852-d0f5476d281f7eaf7ab0c9827a7b4a8602d919c140085f9a4d6fab8e299c40e53</originalsourceid><addsrcrecordid>eNotj0tLw0AURgcfYKzdi6v5AxPvTOa5EUpQW2hRpPtyk7kTIzYJSVz471UqfHA4mwMfY7cScikh3G_K17dcAUAeoLCFPWOZ8oUUTjtzzpbBeXA2GHC_u2CZBCOFtkZesetp-gBQUBifsYdVx9e7nahwoshxGMYe63ee-pE3NM1fI_GJmiN1M85t33HsIh-p7puu_fMbdpnwc6LlPxds__S4L9di-_K8KVdb0XqjRIRktLNReZkcYXJYQR28cugqjd6CikGGWmoAb1JAHW3CypMKodZApliwu1O2JaLDMLZHHL8Pp-PFDyCDSZE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An HMM-based approach for gesture segmentation and recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Deng, J.W. ; Tsui, H.T.</creator><creatorcontrib>Deng, J.W. ; Tsui, H.T.</creatorcontrib><description>Gesture, as a "natural" means, provides an alternative way for human-computer interaction. The recognition of continuous gestures suffers greatly from the existence of non-gesture hand motions. The given gestures can start at any moment in an input sequence. The Hidden Markov model (HMM) is used to tackle this problem. The paper proposes a method for the spotting and recognition of continuous spatio-temporal features. Without sliding the input temporal patterns past the trained models, the algorithm makes use of accumulation scores for evaluation. So it is an exhaustive evaluation method but only a sum operation is needed in each input frame. The method is demonstrated with real experiments on the recognition of some spatio-temporal trajectories. Results of the experiments show that the proposed method is very effective and fast in extracting given gestures from a continuous trajectory containing non-gestures.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9780769507507</identifier><identifier>ISBN: 0769507506</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2000.903636</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Dynamic programming ; Handicapped aids ; Hidden Markov models ; Speech recognition ; Viterbi algorithm ; Vocabulary</subject><ispartof>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.3, p.679-682 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/903636$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/903636$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Deng, J.W.</creatorcontrib><creatorcontrib>Tsui, H.T.</creatorcontrib><title>An HMM-based approach for gesture segmentation and recognition</title><title>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</title><addtitle>ICPR</addtitle><description>Gesture, as a "natural" means, provides an alternative way for human-computer interaction. The recognition of continuous gestures suffers greatly from the existence of non-gesture hand motions. The given gestures can start at any moment in an input sequence. The Hidden Markov model (HMM) is used to tackle this problem. The paper proposes a method for the spotting and recognition of continuous spatio-temporal features. Without sliding the input temporal patterns past the trained models, the algorithm makes use of accumulation scores for evaluation. So it is an exhaustive evaluation method but only a sum operation is needed in each input frame. The method is demonstrated with real experiments on the recognition of some spatio-temporal trajectories. Results of the experiments show that the proposed method is very effective and fast in extracting given gestures from a continuous trajectory containing non-gestures.</description><subject>Dynamic programming</subject><subject>Handicapped aids</subject><subject>Hidden Markov models</subject><subject>Speech recognition</subject><subject>Viterbi algorithm</subject><subject>Vocabulary</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9780769507507</isbn><isbn>0769507506</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLw0AURgcfYKzdi6v5AxPvTOa5EUpQW2hRpPtyk7kTIzYJSVz471UqfHA4mwMfY7cScikh3G_K17dcAUAeoLCFPWOZ8oUUTjtzzpbBeXA2GHC_u2CZBCOFtkZesetp-gBQUBifsYdVx9e7nahwoshxGMYe63ee-pE3NM1fI_GJmiN1M85t33HsIh-p7puu_fMbdpnwc6LlPxds__S4L9di-_K8KVdb0XqjRIRktLNReZkcYXJYQR28cugqjd6CikGGWmoAb1JAHW3CypMKodZApliwu1O2JaLDMLZHHL8Pp-PFDyCDSZE</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Deng, J.W.</creator><creator>Tsui, H.T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>An HMM-based approach for gesture segmentation and recognition</title><author>Deng, J.W. ; Tsui, H.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i852-d0f5476d281f7eaf7ab0c9827a7b4a8602d919c140085f9a4d6fab8e299c40e53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2000</creationdate><topic>Dynamic programming</topic><topic>Handicapped aids</topic><topic>Hidden Markov models</topic><topic>Speech recognition</topic><topic>Viterbi algorithm</topic><topic>Vocabulary</topic><toplevel>online_resources</toplevel><creatorcontrib>Deng, J.W.</creatorcontrib><creatorcontrib>Tsui, H.T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deng, J.W.</au><au>Tsui, H.T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An HMM-based approach for gesture segmentation and recognition</atitle><btitle>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</btitle><stitle>ICPR</stitle><date>2000</date><risdate>2000</risdate><volume>3</volume><spage>679</spage><epage>682 vol.3</epage><pages>679-682 vol.3</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9780769507507</isbn><isbn>0769507506</isbn><abstract>Gesture, as a "natural" means, provides an alternative way for human-computer interaction. The recognition of continuous gestures suffers greatly from the existence of non-gesture hand motions. The given gestures can start at any moment in an input sequence. The Hidden Markov model (HMM) is used to tackle this problem. The paper proposes a method for the spotting and recognition of continuous spatio-temporal features. Without sliding the input temporal patterns past the trained models, the algorithm makes use of accumulation scores for evaluation. So it is an exhaustive evaluation method but only a sum operation is needed in each input frame. The method is demonstrated with real experiments on the recognition of some spatio-temporal trajectories. Results of the experiments show that the proposed method is very effective and fast in extracting given gestures from a continuous trajectory containing non-gestures.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2000.903636</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.3, p.679-682 vol.3 |
issn | 1051-4651 2831-7475 |
language | eng ; jpn |
recordid | cdi_ieee_primary_903636 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Dynamic programming Handicapped aids Hidden Markov models Speech recognition Viterbi algorithm Vocabulary |
title | An HMM-based approach for gesture segmentation and recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20HMM-based%20approach%20for%20gesture%20segmentation%20and%20recognition&rft.btitle=Proceedings%2015th%20International%20Conference%20on%20Pattern%20Recognition.%20ICPR-2000&rft.au=Deng,%20J.W.&rft.date=2000&rft.volume=3&rft.spage=679&rft.epage=682%20vol.3&rft.pages=679-682%20vol.3&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9780769507507&rft.isbn_list=0769507506&rft_id=info:doi/10.1109/ICPR.2000.903636&rft_dat=%3Cieee_6IE%3E903636%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=903636&rfr_iscdi=true |