Label Specific Features-Based Classifier Chains for Multi-Label Classification
Multi-label classification tackles the problems in which each instance is associated with multiple labels. Due to the interdependence among labels, exploiting label correlations is the main means to enhance the performances of classifiers and a variety of corresponding multi-label algorithms have be...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.51265-51275 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51275 |
---|---|
container_issue | |
container_start_page | 51265 |
container_title | IEEE access |
container_volume | 8 |
creator | Weng, Wei Wang, Da-Han Chen, Chin-Ling Wen, Juan Wu, Shun-Xiang |
description | Multi-label classification tackles the problems in which each instance is associated with multiple labels. Due to the interdependence among labels, exploiting label correlations is the main means to enhance the performances of classifiers and a variety of corresponding multi-label algorithms have been proposed. Among those algorithms Classifier Chains (CC) is one of the most effective methods. It induces binary classifiers for each label, and these classifiers are linked in a chain. In the chain, the labels predicted by previous classifiers are used as additional features for the current classifier. The original CC has two shortcomings which potentially decrease classification performances: random label ordering, noise in original and additional features. To deal with these problems, we propose a novel and effective algorithm named LSF-CC, i.e. Label Specific Features based Classifier Chain for multi-label classification . At first, a feature estimating technique is employed to produce a list of most relevant features and labels for each label. According to these lists, we define a chain to guarantee that the most frequent labels that appear in these lists are top-ranked. Then, label specific features can be selected from the original feature space and label space. Based on these label specific features, corresponding binary classifiers are learned for each label. Experiments on several multi-label data sets from various domains have shown that the proposed method outperforms well-established approaches. |
doi_str_mv | 10.1109/ACCESS.2020.2980551 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9035463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9035463</ieee_id><doaj_id>oai_doaj_org_article_9f95aeb7d8e0488b97e367a2870b8c02</doaj_id><sourcerecordid>2454722640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e364ee0b1c69c77a321c7353a4298340c9665a0ebc95c522e8c3374aaacf1b93</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBIoLFfsEslzh35bJIjVBtMGnDY7pGbuZCprCPpDvx7MjomfLFlv_ds62XZhJIppcTcP1TVbLWaMsLIlBlNpKQX2Q2jpSm45OXlv_o6G8e4JSl0akl1k70uocY2X-3R-ca7fI7QHwLG4hEibvKqhRjTAENefYDfxbzpQv5yaHtfDMw_hIPed7vb7KqBNuL4lEfZej5bV8_F8u1pUT0sCyeI7gvkpUAkNXWlcUoBZ9SpdCCI9AAXxJmylECwdkY6yRhqx7kSAOAaWhs-yhaD7KaDrd0H_wnh23bg7W-jC-8WQu9di9Y0RgLWaqORCK1ro9JyBUwrUmtHWNK6G7T2ofs6YOzttjuEXbreMiGFYqwUJKH4gHKhizFgc95KiT3aYAcb7NEGe7IhsSYDyyPimWEIl6Lk_Aepq4H8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454722640</pqid></control><display><type>article</type><title>Label Specific Features-Based Classifier Chains for Multi-Label Classification</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Weng, Wei ; Wang, Da-Han ; Chen, Chin-Ling ; Wen, Juan ; Wu, Shun-Xiang</creator><creatorcontrib>Weng, Wei ; Wang, Da-Han ; Chen, Chin-Ling ; Wen, Juan ; Wu, Shun-Xiang</creatorcontrib><description>Multi-label classification tackles the problems in which each instance is associated with multiple labels. Due to the interdependence among labels, exploiting label correlations is the main means to enhance the performances of classifiers and a variety of corresponding multi-label algorithms have been proposed. Among those algorithms Classifier Chains (CC) is one of the most effective methods. It induces binary classifiers for each label, and these classifiers are linked in a chain. In the chain, the labels predicted by previous classifiers are used as additional features for the current classifier. The original CC has two shortcomings which potentially decrease classification performances: random label ordering, noise in original and additional features. To deal with these problems, we propose a novel and effective algorithm named LSF-CC, i.e. Label Specific Features based Classifier Chain for multi-label classification . At first, a feature estimating technique is employed to produce a list of most relevant features and labels for each label. According to these lists, we define a chain to guarantee that the most frequent labels that appear in these lists are top-ranked. Then, label specific features can be selected from the original feature space and label space. Based on these label specific features, corresponding binary classifiers are learned for each label. Experiments on several multi-label data sets from various domains have shown that the proposed method outperforms well-established approaches.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2980551</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Chains ; Classification ; Classifier chains ; Classifiers ; Correlation ; Data science ; Decision trees ; Feature extraction ; label specific features ; Labels ; Machine learning ; multi-label learning ; Prediction algorithms ; Task analysis</subject><ispartof>IEEE access, 2020, Vol.8, p.51265-51275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e364ee0b1c69c77a321c7353a4298340c9665a0ebc95c522e8c3374aaacf1b93</citedby><cites>FETCH-LOGICAL-c408t-e364ee0b1c69c77a321c7353a4298340c9665a0ebc95c522e8c3374aaacf1b93</cites><orcidid>0000-0002-5901-0778 ; 0000-0002-4958-2043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9035463$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Weng, Wei</creatorcontrib><creatorcontrib>Wang, Da-Han</creatorcontrib><creatorcontrib>Chen, Chin-Ling</creatorcontrib><creatorcontrib>Wen, Juan</creatorcontrib><creatorcontrib>Wu, Shun-Xiang</creatorcontrib><title>Label Specific Features-Based Classifier Chains for Multi-Label Classification</title><title>IEEE access</title><addtitle>Access</addtitle><description>Multi-label classification tackles the problems in which each instance is associated with multiple labels. Due to the interdependence among labels, exploiting label correlations is the main means to enhance the performances of classifiers and a variety of corresponding multi-label algorithms have been proposed. Among those algorithms Classifier Chains (CC) is one of the most effective methods. It induces binary classifiers for each label, and these classifiers are linked in a chain. In the chain, the labels predicted by previous classifiers are used as additional features for the current classifier. The original CC has two shortcomings which potentially decrease classification performances: random label ordering, noise in original and additional features. To deal with these problems, we propose a novel and effective algorithm named LSF-CC, i.e. Label Specific Features based Classifier Chain for multi-label classification . At first, a feature estimating technique is employed to produce a list of most relevant features and labels for each label. According to these lists, we define a chain to guarantee that the most frequent labels that appear in these lists are top-ranked. Then, label specific features can be selected from the original feature space and label space. Based on these label specific features, corresponding binary classifiers are learned for each label. Experiments on several multi-label data sets from various domains have shown that the proposed method outperforms well-established approaches.</description><subject>Algorithms</subject><subject>Chains</subject><subject>Classification</subject><subject>Classifier chains</subject><subject>Classifiers</subject><subject>Correlation</subject><subject>Data science</subject><subject>Decision trees</subject><subject>Feature extraction</subject><subject>label specific features</subject><subject>Labels</subject><subject>Machine learning</subject><subject>multi-label learning</subject><subject>Prediction algorithms</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBIoLFfsEslzh35bJIjVBtMGnDY7pGbuZCprCPpDvx7MjomfLFlv_ds62XZhJIppcTcP1TVbLWaMsLIlBlNpKQX2Q2jpSm45OXlv_o6G8e4JSl0akl1k70uocY2X-3R-ca7fI7QHwLG4hEibvKqhRjTAENefYDfxbzpQv5yaHtfDMw_hIPed7vb7KqBNuL4lEfZej5bV8_F8u1pUT0sCyeI7gvkpUAkNXWlcUoBZ9SpdCCI9AAXxJmylECwdkY6yRhqx7kSAOAaWhs-yhaD7KaDrd0H_wnh23bg7W-jC-8WQu9di9Y0RgLWaqORCK1ro9JyBUwrUmtHWNK6G7T2ofs6YOzttjuEXbreMiGFYqwUJKH4gHKhizFgc95KiT3aYAcb7NEGe7IhsSYDyyPimWEIl6Lk_Aepq4H8</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Weng, Wei</creator><creator>Wang, Da-Han</creator><creator>Chen, Chin-Ling</creator><creator>Wen, Juan</creator><creator>Wu, Shun-Xiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5901-0778</orcidid><orcidid>https://orcid.org/0000-0002-4958-2043</orcidid></search><sort><creationdate>2020</creationdate><title>Label Specific Features-Based Classifier Chains for Multi-Label Classification</title><author>Weng, Wei ; Wang, Da-Han ; Chen, Chin-Ling ; Wen, Juan ; Wu, Shun-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e364ee0b1c69c77a321c7353a4298340c9665a0ebc95c522e8c3374aaacf1b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Chains</topic><topic>Classification</topic><topic>Classifier chains</topic><topic>Classifiers</topic><topic>Correlation</topic><topic>Data science</topic><topic>Decision trees</topic><topic>Feature extraction</topic><topic>label specific features</topic><topic>Labels</topic><topic>Machine learning</topic><topic>multi-label learning</topic><topic>Prediction algorithms</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Wei</creatorcontrib><creatorcontrib>Wang, Da-Han</creatorcontrib><creatorcontrib>Chen, Chin-Ling</creatorcontrib><creatorcontrib>Wen, Juan</creatorcontrib><creatorcontrib>Wu, Shun-Xiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Wei</au><au>Wang, Da-Han</au><au>Chen, Chin-Ling</au><au>Wen, Juan</au><au>Wu, Shun-Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Label Specific Features-Based Classifier Chains for Multi-Label Classification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>51265</spage><epage>51275</epage><pages>51265-51275</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Multi-label classification tackles the problems in which each instance is associated with multiple labels. Due to the interdependence among labels, exploiting label correlations is the main means to enhance the performances of classifiers and a variety of corresponding multi-label algorithms have been proposed. Among those algorithms Classifier Chains (CC) is one of the most effective methods. It induces binary classifiers for each label, and these classifiers are linked in a chain. In the chain, the labels predicted by previous classifiers are used as additional features for the current classifier. The original CC has two shortcomings which potentially decrease classification performances: random label ordering, noise in original and additional features. To deal with these problems, we propose a novel and effective algorithm named LSF-CC, i.e. Label Specific Features based Classifier Chain for multi-label classification . At first, a feature estimating technique is employed to produce a list of most relevant features and labels for each label. According to these lists, we define a chain to guarantee that the most frequent labels that appear in these lists are top-ranked. Then, label specific features can be selected from the original feature space and label space. Based on these label specific features, corresponding binary classifiers are learned for each label. Experiments on several multi-label data sets from various domains have shown that the proposed method outperforms well-established approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2980551</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5901-0778</orcidid><orcidid>https://orcid.org/0000-0002-4958-2043</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.51265-51275 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9035463 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Chains Classification Classifier chains Classifiers Correlation Data science Decision trees Feature extraction label specific features Labels Machine learning multi-label learning Prediction algorithms Task analysis |
title | Label Specific Features-Based Classifier Chains for Multi-Label Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Label%20Specific%20Features-Based%20Classifier%20Chains%20for%20Multi-Label%20Classification&rft.jtitle=IEEE%20access&rft.au=Weng,%20Wei&rft.date=2020&rft.volume=8&rft.spage=51265&rft.epage=51275&rft.pages=51265-51275&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2980551&rft_dat=%3Cproquest_ieee_%3E2454722640%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454722640&rft_id=info:pmid/&rft_ieee_id=9035463&rft_doaj_id=oai_doaj_org_article_9f95aeb7d8e0488b97e367a2870b8c02&rfr_iscdi=true |