Label Specific Features-Based Classifier Chains for Multi-Label Classification

Multi-label classification tackles the problems in which each instance is associated with multiple labels. Due to the interdependence among labels, exploiting label correlations is the main means to enhance the performances of classifiers and a variety of corresponding multi-label algorithms have be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.51265-51275
Hauptverfasser: Weng, Wei, Wang, Da-Han, Chen, Chin-Ling, Wen, Juan, Wu, Shun-Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51275
container_issue
container_start_page 51265
container_title IEEE access
container_volume 8
creator Weng, Wei
Wang, Da-Han
Chen, Chin-Ling
Wen, Juan
Wu, Shun-Xiang
description Multi-label classification tackles the problems in which each instance is associated with multiple labels. Due to the interdependence among labels, exploiting label correlations is the main means to enhance the performances of classifiers and a variety of corresponding multi-label algorithms have been proposed. Among those algorithms Classifier Chains (CC) is one of the most effective methods. It induces binary classifiers for each label, and these classifiers are linked in a chain. In the chain, the labels predicted by previous classifiers are used as additional features for the current classifier. The original CC has two shortcomings which potentially decrease classification performances: random label ordering, noise in original and additional features. To deal with these problems, we propose a novel and effective algorithm named LSF-CC, i.e. Label Specific Features based Classifier Chain for multi-label classification . At first, a feature estimating technique is employed to produce a list of most relevant features and labels for each label. According to these lists, we define a chain to guarantee that the most frequent labels that appear in these lists are top-ranked. Then, label specific features can be selected from the original feature space and label space. Based on these label specific features, corresponding binary classifiers are learned for each label. Experiments on several multi-label data sets from various domains have shown that the proposed method outperforms well-established approaches.
doi_str_mv 10.1109/ACCESS.2020.2980551
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9035463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9035463</ieee_id><doaj_id>oai_doaj_org_article_9f95aeb7d8e0488b97e367a2870b8c02</doaj_id><sourcerecordid>2454722640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e364ee0b1c69c77a321c7353a4298340c9665a0ebc95c522e8c3374aaacf1b93</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBIoLFfsEslzh35bJIjVBtMGnDY7pGbuZCprCPpDvx7MjomfLFlv_ds62XZhJIppcTcP1TVbLWaMsLIlBlNpKQX2Q2jpSm45OXlv_o6G8e4JSl0akl1k70uocY2X-3R-ca7fI7QHwLG4hEibvKqhRjTAENefYDfxbzpQv5yaHtfDMw_hIPed7vb7KqBNuL4lEfZej5bV8_F8u1pUT0sCyeI7gvkpUAkNXWlcUoBZ9SpdCCI9AAXxJmylECwdkY6yRhqx7kSAOAaWhs-yhaD7KaDrd0H_wnh23bg7W-jC-8WQu9di9Y0RgLWaqORCK1ro9JyBUwrUmtHWNK6G7T2ofs6YOzttjuEXbreMiGFYqwUJKH4gHKhizFgc95KiT3aYAcb7NEGe7IhsSYDyyPimWEIl6Lk_Aepq4H8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454722640</pqid></control><display><type>article</type><title>Label Specific Features-Based Classifier Chains for Multi-Label Classification</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Weng, Wei ; Wang, Da-Han ; Chen, Chin-Ling ; Wen, Juan ; Wu, Shun-Xiang</creator><creatorcontrib>Weng, Wei ; Wang, Da-Han ; Chen, Chin-Ling ; Wen, Juan ; Wu, Shun-Xiang</creatorcontrib><description>Multi-label classification tackles the problems in which each instance is associated with multiple labels. Due to the interdependence among labels, exploiting label correlations is the main means to enhance the performances of classifiers and a variety of corresponding multi-label algorithms have been proposed. Among those algorithms Classifier Chains (CC) is one of the most effective methods. It induces binary classifiers for each label, and these classifiers are linked in a chain. In the chain, the labels predicted by previous classifiers are used as additional features for the current classifier. The original CC has two shortcomings which potentially decrease classification performances: random label ordering, noise in original and additional features. To deal with these problems, we propose a novel and effective algorithm named LSF-CC, i.e. Label Specific Features based Classifier Chain for multi-label classification . At first, a feature estimating technique is employed to produce a list of most relevant features and labels for each label. According to these lists, we define a chain to guarantee that the most frequent labels that appear in these lists are top-ranked. Then, label specific features can be selected from the original feature space and label space. Based on these label specific features, corresponding binary classifiers are learned for each label. Experiments on several multi-label data sets from various domains have shown that the proposed method outperforms well-established approaches.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2980551</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Chains ; Classification ; Classifier chains ; Classifiers ; Correlation ; Data science ; Decision trees ; Feature extraction ; label specific features ; Labels ; Machine learning ; multi-label learning ; Prediction algorithms ; Task analysis</subject><ispartof>IEEE access, 2020, Vol.8, p.51265-51275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e364ee0b1c69c77a321c7353a4298340c9665a0ebc95c522e8c3374aaacf1b93</citedby><cites>FETCH-LOGICAL-c408t-e364ee0b1c69c77a321c7353a4298340c9665a0ebc95c522e8c3374aaacf1b93</cites><orcidid>0000-0002-5901-0778 ; 0000-0002-4958-2043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9035463$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Weng, Wei</creatorcontrib><creatorcontrib>Wang, Da-Han</creatorcontrib><creatorcontrib>Chen, Chin-Ling</creatorcontrib><creatorcontrib>Wen, Juan</creatorcontrib><creatorcontrib>Wu, Shun-Xiang</creatorcontrib><title>Label Specific Features-Based Classifier Chains for Multi-Label Classification</title><title>IEEE access</title><addtitle>Access</addtitle><description>Multi-label classification tackles the problems in which each instance is associated with multiple labels. Due to the interdependence among labels, exploiting label correlations is the main means to enhance the performances of classifiers and a variety of corresponding multi-label algorithms have been proposed. Among those algorithms Classifier Chains (CC) is one of the most effective methods. It induces binary classifiers for each label, and these classifiers are linked in a chain. In the chain, the labels predicted by previous classifiers are used as additional features for the current classifier. The original CC has two shortcomings which potentially decrease classification performances: random label ordering, noise in original and additional features. To deal with these problems, we propose a novel and effective algorithm named LSF-CC, i.e. Label Specific Features based Classifier Chain for multi-label classification . At first, a feature estimating technique is employed to produce a list of most relevant features and labels for each label. According to these lists, we define a chain to guarantee that the most frequent labels that appear in these lists are top-ranked. Then, label specific features can be selected from the original feature space and label space. Based on these label specific features, corresponding binary classifiers are learned for each label. Experiments on several multi-label data sets from various domains have shown that the proposed method outperforms well-established approaches.</description><subject>Algorithms</subject><subject>Chains</subject><subject>Classification</subject><subject>Classifier chains</subject><subject>Classifiers</subject><subject>Correlation</subject><subject>Data science</subject><subject>Decision trees</subject><subject>Feature extraction</subject><subject>label specific features</subject><subject>Labels</subject><subject>Machine learning</subject><subject>multi-label learning</subject><subject>Prediction algorithms</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBIoLFfsEslzh35bJIjVBtMGnDY7pGbuZCprCPpDvx7MjomfLFlv_ds62XZhJIppcTcP1TVbLWaMsLIlBlNpKQX2Q2jpSm45OXlv_o6G8e4JSl0akl1k70uocY2X-3R-ca7fI7QHwLG4hEibvKqhRjTAENefYDfxbzpQv5yaHtfDMw_hIPed7vb7KqBNuL4lEfZej5bV8_F8u1pUT0sCyeI7gvkpUAkNXWlcUoBZ9SpdCCI9AAXxJmylECwdkY6yRhqx7kSAOAaWhs-yhaD7KaDrd0H_wnh23bg7W-jC-8WQu9di9Y0RgLWaqORCK1ro9JyBUwrUmtHWNK6G7T2ofs6YOzttjuEXbreMiGFYqwUJKH4gHKhizFgc95KiT3aYAcb7NEGe7IhsSYDyyPimWEIl6Lk_Aepq4H8</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Weng, Wei</creator><creator>Wang, Da-Han</creator><creator>Chen, Chin-Ling</creator><creator>Wen, Juan</creator><creator>Wu, Shun-Xiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5901-0778</orcidid><orcidid>https://orcid.org/0000-0002-4958-2043</orcidid></search><sort><creationdate>2020</creationdate><title>Label Specific Features-Based Classifier Chains for Multi-Label Classification</title><author>Weng, Wei ; Wang, Da-Han ; Chen, Chin-Ling ; Wen, Juan ; Wu, Shun-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e364ee0b1c69c77a321c7353a4298340c9665a0ebc95c522e8c3374aaacf1b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Chains</topic><topic>Classification</topic><topic>Classifier chains</topic><topic>Classifiers</topic><topic>Correlation</topic><topic>Data science</topic><topic>Decision trees</topic><topic>Feature extraction</topic><topic>label specific features</topic><topic>Labels</topic><topic>Machine learning</topic><topic>multi-label learning</topic><topic>Prediction algorithms</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Wei</creatorcontrib><creatorcontrib>Wang, Da-Han</creatorcontrib><creatorcontrib>Chen, Chin-Ling</creatorcontrib><creatorcontrib>Wen, Juan</creatorcontrib><creatorcontrib>Wu, Shun-Xiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Wei</au><au>Wang, Da-Han</au><au>Chen, Chin-Ling</au><au>Wen, Juan</au><au>Wu, Shun-Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Label Specific Features-Based Classifier Chains for Multi-Label Classification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>51265</spage><epage>51275</epage><pages>51265-51275</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Multi-label classification tackles the problems in which each instance is associated with multiple labels. Due to the interdependence among labels, exploiting label correlations is the main means to enhance the performances of classifiers and a variety of corresponding multi-label algorithms have been proposed. Among those algorithms Classifier Chains (CC) is one of the most effective methods. It induces binary classifiers for each label, and these classifiers are linked in a chain. In the chain, the labels predicted by previous classifiers are used as additional features for the current classifier. The original CC has two shortcomings which potentially decrease classification performances: random label ordering, noise in original and additional features. To deal with these problems, we propose a novel and effective algorithm named LSF-CC, i.e. Label Specific Features based Classifier Chain for multi-label classification . At first, a feature estimating technique is employed to produce a list of most relevant features and labels for each label. According to these lists, we define a chain to guarantee that the most frequent labels that appear in these lists are top-ranked. Then, label specific features can be selected from the original feature space and label space. Based on these label specific features, corresponding binary classifiers are learned for each label. Experiments on several multi-label data sets from various domains have shown that the proposed method outperforms well-established approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2980551</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5901-0778</orcidid><orcidid>https://orcid.org/0000-0002-4958-2043</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.51265-51275
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9035463
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Chains
Classification
Classifier chains
Classifiers
Correlation
Data science
Decision trees
Feature extraction
label specific features
Labels
Machine learning
multi-label learning
Prediction algorithms
Task analysis
title Label Specific Features-Based Classifier Chains for Multi-Label Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Label%20Specific%20Features-Based%20Classifier%20Chains%20for%20Multi-Label%20Classification&rft.jtitle=IEEE%20access&rft.au=Weng,%20Wei&rft.date=2020&rft.volume=8&rft.spage=51265&rft.epage=51275&rft.pages=51265-51275&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2980551&rft_dat=%3Cproquest_ieee_%3E2454722640%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454722640&rft_id=info:pmid/&rft_ieee_id=9035463&rft_doaj_id=oai_doaj_org_article_9f95aeb7d8e0488b97e367a2870b8c02&rfr_iscdi=true