Self-Learning Optimal Control for Ice-Storage Air Conditioning Systems via Data-Based Adaptive Dynamic Programming

In this article, the optimal control scheme for ice-storage air conditioning (IAC) system is solved via a data-based adaptive dynamic programming (ADP) method. It is the first time that ADP is employed to design a self-learning scheme, which obtains the optimal control policy of IAC system. First, b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2021-04, Vol.68 (4), p.3599-3608
Hauptverfasser: Wei, Qinglai, Liao, Zehua, Song, Ruizhuo, Zhang, Pinjia, Wang, Zhuo, Xiao, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3608
container_issue 4
container_start_page 3599
container_title IEEE transactions on industrial electronics (1982)
container_volume 68
creator Wei, Qinglai
Liao, Zehua
Song, Ruizhuo
Zhang, Pinjia
Wang, Zhuo
Xiao, Jun
description In this article, the optimal control scheme for ice-storage air conditioning (IAC) system is solved via a data-based adaptive dynamic programming (ADP) method. It is the first time that ADP is employed to design a self-learning scheme, which obtains the optimal control policy of IAC system. First, based on the data of the temperature, irradiance, and cooling load in an actual project, a prediction model of cooling load is built by a three-layer neural network with the performance verification. Second, the operation of the IAC system is analyzed. Third, a data-based ADP method is designed to realize a self-learning optimal control for the IAC system. Then, numerical results show that using the data-based optimal control method can reduce the operation costs. Finally, the comparison results show that the developed ADP method improves the system efficiency, minimizing the overall cost. Thus, the superiority of the developed algorithm is verified.
doi_str_mv 10.1109/TIE.2020.2978699
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9032343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9032343</ieee_id><sourcerecordid>2470633274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-68d8860f3fd4b311ff6df5686f713b5264ff70072ab516e522b3f45f12e93a0f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wU3AderL98yytlULhQqt6yEzk5SUzqQm00L_vVMrrt7i3nMfHIQeKYwohfxlPZ-NGDAYsVxnKs-v0IBKqUmei-waDYDpjAAIdYvuUtoCUCGpHKC4sjtHFtbE1rcbvNx3vjE7PAltF8MOuxDxvLJk1YVoNhaPfTxnte98-AVWp9TZJuGjN3hqOkNeTbI1HtemXzpaPD21pvEV_oxhE03T9Mw9unFml-zD3x2ir7fZevJBFsv3-WS8IBXnWUdUVmeZAsddLUpOqXOqdlJlymnKS8mUcE4DaGZKSZWVjJXcCekoszk3PTdEz5fdfQzfB5u6YhsOse1fFkxoUJwzLfoWXFpVDClF64p97BXEU0GhOJsterPF2WzxZ7ZHni6It9b-13PgjAvOfwDXFnSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470633274</pqid></control><display><type>article</type><title>Self-Learning Optimal Control for Ice-Storage Air Conditioning Systems via Data-Based Adaptive Dynamic Programming</title><source>IEEE Electronic Library (IEL)</source><creator>Wei, Qinglai ; Liao, Zehua ; Song, Ruizhuo ; Zhang, Pinjia ; Wang, Zhuo ; Xiao, Jun</creator><creatorcontrib>Wei, Qinglai ; Liao, Zehua ; Song, Ruizhuo ; Zhang, Pinjia ; Wang, Zhuo ; Xiao, Jun</creatorcontrib><description>In this article, the optimal control scheme for ice-storage air conditioning (IAC) system is solved via a data-based adaptive dynamic programming (ADP) method. It is the first time that ADP is employed to design a self-learning scheme, which obtains the optimal control policy of IAC system. First, based on the data of the temperature, irradiance, and cooling load in an actual project, a prediction model of cooling load is built by a three-layer neural network with the performance verification. Second, the operation of the IAC system is analyzed. Third, a data-based ADP method is designed to realize a self-learning optimal control for the IAC system. Then, numerical results show that using the data-based optimal control method can reduce the operation costs. Finally, the comparison results show that the developed ADP method improves the system efficiency, minimizing the overall cost. Thus, the superiority of the developed algorithm is verified.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2020.2978699</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Adaptive dynamic programming (ADP) ; Air conditioning ; Algorithms ; Control methods ; cooling load prediction ; Cooling loads ; Dynamic programming ; ice-storage air conditioning (IAC) ; Irradiance ; Learning ; Load modeling ; neural network ; Neural networks ; Optimal control ; Prediction models ; Predictive models</subject><ispartof>IEEE transactions on industrial electronics (1982), 2021-04, Vol.68 (4), p.3599-3608</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-68d8860f3fd4b311ff6df5686f713b5264ff70072ab516e522b3f45f12e93a0f3</citedby><cites>FETCH-LOGICAL-c338t-68d8860f3fd4b311ff6df5686f713b5264ff70072ab516e522b3f45f12e93a0f3</cites><orcidid>0000-0002-6693-2738 ; 0000-0002-2735-6969 ; 0000-0001-7002-9800 ; 0000-0002-1288-956X ; 0000-0002-1799-3948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9032343$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9032343$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei, Qinglai</creatorcontrib><creatorcontrib>Liao, Zehua</creatorcontrib><creatorcontrib>Song, Ruizhuo</creatorcontrib><creatorcontrib>Zhang, Pinjia</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Xiao, Jun</creatorcontrib><title>Self-Learning Optimal Control for Ice-Storage Air Conditioning Systems via Data-Based Adaptive Dynamic Programming</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>In this article, the optimal control scheme for ice-storage air conditioning (IAC) system is solved via a data-based adaptive dynamic programming (ADP) method. It is the first time that ADP is employed to design a self-learning scheme, which obtains the optimal control policy of IAC system. First, based on the data of the temperature, irradiance, and cooling load in an actual project, a prediction model of cooling load is built by a three-layer neural network with the performance verification. Second, the operation of the IAC system is analyzed. Third, a data-based ADP method is designed to realize a self-learning optimal control for the IAC system. Then, numerical results show that using the data-based optimal control method can reduce the operation costs. Finally, the comparison results show that the developed ADP method improves the system efficiency, minimizing the overall cost. Thus, the superiority of the developed algorithm is verified.</description><subject>Adaptive control</subject><subject>Adaptive dynamic programming (ADP)</subject><subject>Air conditioning</subject><subject>Algorithms</subject><subject>Control methods</subject><subject>cooling load prediction</subject><subject>Cooling loads</subject><subject>Dynamic programming</subject><subject>ice-storage air conditioning (IAC)</subject><subject>Irradiance</subject><subject>Learning</subject><subject>Load modeling</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Optimal control</subject><subject>Prediction models</subject><subject>Predictive models</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKt7wU3AderL98yytlULhQqt6yEzk5SUzqQm00L_vVMrrt7i3nMfHIQeKYwohfxlPZ-NGDAYsVxnKs-v0IBKqUmei-waDYDpjAAIdYvuUtoCUCGpHKC4sjtHFtbE1rcbvNx3vjE7PAltF8MOuxDxvLJk1YVoNhaPfTxnte98-AVWp9TZJuGjN3hqOkNeTbI1HtemXzpaPD21pvEV_oxhE03T9Mw9unFml-zD3x2ir7fZevJBFsv3-WS8IBXnWUdUVmeZAsddLUpOqXOqdlJlymnKS8mUcE4DaGZKSZWVjJXcCekoszk3PTdEz5fdfQzfB5u6YhsOse1fFkxoUJwzLfoWXFpVDClF64p97BXEU0GhOJsterPF2WzxZ7ZHni6It9b-13PgjAvOfwDXFnSE</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wei, Qinglai</creator><creator>Liao, Zehua</creator><creator>Song, Ruizhuo</creator><creator>Zhang, Pinjia</creator><creator>Wang, Zhuo</creator><creator>Xiao, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6693-2738</orcidid><orcidid>https://orcid.org/0000-0002-2735-6969</orcidid><orcidid>https://orcid.org/0000-0001-7002-9800</orcidid><orcidid>https://orcid.org/0000-0002-1288-956X</orcidid><orcidid>https://orcid.org/0000-0002-1799-3948</orcidid></search><sort><creationdate>20210401</creationdate><title>Self-Learning Optimal Control for Ice-Storage Air Conditioning Systems via Data-Based Adaptive Dynamic Programming</title><author>Wei, Qinglai ; Liao, Zehua ; Song, Ruizhuo ; Zhang, Pinjia ; Wang, Zhuo ; Xiao, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-68d8860f3fd4b311ff6df5686f713b5264ff70072ab516e522b3f45f12e93a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Adaptive dynamic programming (ADP)</topic><topic>Air conditioning</topic><topic>Algorithms</topic><topic>Control methods</topic><topic>cooling load prediction</topic><topic>Cooling loads</topic><topic>Dynamic programming</topic><topic>ice-storage air conditioning (IAC)</topic><topic>Irradiance</topic><topic>Learning</topic><topic>Load modeling</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Optimal control</topic><topic>Prediction models</topic><topic>Predictive models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Qinglai</creatorcontrib><creatorcontrib>Liao, Zehua</creatorcontrib><creatorcontrib>Song, Ruizhuo</creatorcontrib><creatorcontrib>Zhang, Pinjia</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Xiao, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Qinglai</au><au>Liao, Zehua</au><au>Song, Ruizhuo</au><au>Zhang, Pinjia</au><au>Wang, Zhuo</au><au>Xiao, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Learning Optimal Control for Ice-Storage Air Conditioning Systems via Data-Based Adaptive Dynamic Programming</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>68</volume><issue>4</issue><spage>3599</spage><epage>3608</epage><pages>3599-3608</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>In this article, the optimal control scheme for ice-storage air conditioning (IAC) system is solved via a data-based adaptive dynamic programming (ADP) method. It is the first time that ADP is employed to design a self-learning scheme, which obtains the optimal control policy of IAC system. First, based on the data of the temperature, irradiance, and cooling load in an actual project, a prediction model of cooling load is built by a three-layer neural network with the performance verification. Second, the operation of the IAC system is analyzed. Third, a data-based ADP method is designed to realize a self-learning optimal control for the IAC system. Then, numerical results show that using the data-based optimal control method can reduce the operation costs. Finally, the comparison results show that the developed ADP method improves the system efficiency, minimizing the overall cost. Thus, the superiority of the developed algorithm is verified.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2020.2978699</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6693-2738</orcidid><orcidid>https://orcid.org/0000-0002-2735-6969</orcidid><orcidid>https://orcid.org/0000-0001-7002-9800</orcidid><orcidid>https://orcid.org/0000-0002-1288-956X</orcidid><orcidid>https://orcid.org/0000-0002-1799-3948</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2021-04, Vol.68 (4), p.3599-3608
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_9032343
source IEEE Electronic Library (IEL)
subjects Adaptive control
Adaptive dynamic programming (ADP)
Air conditioning
Algorithms
Control methods
cooling load prediction
Cooling loads
Dynamic programming
ice-storage air conditioning (IAC)
Irradiance
Learning
Load modeling
neural network
Neural networks
Optimal control
Prediction models
Predictive models
title Self-Learning Optimal Control for Ice-Storage Air Conditioning Systems via Data-Based Adaptive Dynamic Programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Learning%20Optimal%20Control%20for%20Ice-Storage%20Air%20Conditioning%20Systems%20via%20Data-Based%20Adaptive%20Dynamic%20Programming&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Wei,%20Qinglai&rft.date=2021-04-01&rft.volume=68&rft.issue=4&rft.spage=3599&rft.epage=3608&rft.pages=3599-3608&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2020.2978699&rft_dat=%3Cproquest_RIE%3E2470633274%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470633274&rft_id=info:pmid/&rft_ieee_id=9032343&rfr_iscdi=true