Dilute Oxygen Alloys of ZnS as a Promising Toxic-Free Buffer Layer for Cu(In, Ga)Se₂ Thin-Film Solar Cells

Using ZnS as a buffer layer in many thin-film solar cells, such as Cu(In, Ga)Se₂ (CIGS), has not been successful as it usually results in a high barrier that suppresses the flow of electrons to the designated contact. To tackle this issue, we analyze dilute oxygen (O) alloys of ZnS as a buffer layer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2020-04, Vol.67 (4), p.1-8
Hauptverfasser: Alqahtani, Saad M., Baloch, Ahmer A. B., Ahmed, Shaikh S., Alharbi, Fahhad H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 4
container_start_page 1
container_title IEEE transactions on electron devices
container_volume 67
creator Alqahtani, Saad M.
Baloch, Ahmer A. B.
Ahmed, Shaikh S.
Alharbi, Fahhad H.
description Using ZnS as a buffer layer in many thin-film solar cells, such as Cu(In, Ga)Se₂ (CIGS), has not been successful as it usually results in a high barrier that suppresses the flow of electrons to the designated contact. To tackle this issue, we analyze dilute oxygen (O) alloys of ZnS as a buffer layer. It exhibits an unusual energy bandgap (EG) bowing and a sharp increase in electron affinity energy. Such features commonly arise in anion-alloyed compositions due to band anticrossing (BAC) interactions between the introduced defect energy state of O and the extended conduction band edge (CBE) of ZnS that causes a downshift of the CBE. Besides the flexibility of tuning the CBE, this is important to avoid the toxicity of cadmium (Cd) and its compounds. In this article, the band edges of lightly alloyed ZnS₁₋ₓOₓ are computed using an atomistic tight-binding (TB) BAC model. Then, a fitting energy band bowing (EBB) model is developed to capture efficiently the nonlinear variations of their EG and electron affinity energy. For O composition ranging between 0% and 5%, it is observed that the electron affinity energy sharply increases from 3.3 to 3.98 eV. Also, EG drastically reduces from 3.8 to 3.08 eV. Device-wise, by analyzing the effect of dilute O alloys and the doping density of the ZnS buffer layer, it is found that electron transport is remarkably improved with O composition. In ZnS0.95O0.05 alloy with doping density 1 x 10¹⁸ cm⁻³, the maximum power conversion efficiency (PCE) reaches approximately 23.82%.
doi_str_mv 10.1109/TED.2020.2975888
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9031738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9031738</ieee_id><sourcerecordid>2383325217</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1608-f50c4d9429de67df18ae3167b7156613e92023a61ee4aee64520adfc9e9940eb3</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKt7wU3AjYJT85pMsqx9WShU6LhxM6TtTU1JZ2rSgc62P9Vf4kDdnMvhfNzLPQjdU9KjlOjXfDTsMcJIj-ksVUpdoA5N0yzRUshL1CGEqkRzxa_RTYzb1kohWAf5ofP1AfD82GygxH3vqybiyuKvcoFNxAZ_hGrnois3OK-ObpWMAwB-q62FgGemadVWAQ_qp2n5gifmeQG_pxPOv12ZjJ3f4UXlTZuD9_EWXVnjI9z9zy76HI_ywXsym0-mg_4scVQSldiUrMRaC6bXILO1pcoApzJbZjSVknLQ7aPcSAogDIAUKSNmbVcatBYElryLHs9796H6qSEeim1Vh7I9WbC2As5SRrOWejhTDgCKfXA7E5pCE95miv8B79th6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383325217</pqid></control><display><type>article</type><title>Dilute Oxygen Alloys of ZnS as a Promising Toxic-Free Buffer Layer for Cu(In, Ga)Se₂ Thin-Film Solar Cells</title><source>IEEE Electronic Library (IEL)</source><creator>Alqahtani, Saad M. ; Baloch, Ahmer A. B. ; Ahmed, Shaikh S. ; Alharbi, Fahhad H.</creator><creatorcontrib>Alqahtani, Saad M. ; Baloch, Ahmer A. B. ; Ahmed, Shaikh S. ; Alharbi, Fahhad H.</creatorcontrib><description>Using ZnS as a buffer layer in many thin-film solar cells, such as Cu(In, Ga)Se₂ (CIGS), has not been successful as it usually results in a high barrier that suppresses the flow of electrons to the designated contact. To tackle this issue, we analyze dilute oxygen (O) alloys of ZnS as a buffer layer. It exhibits an unusual energy bandgap (EG) bowing and a sharp increase in electron affinity energy. Such features commonly arise in anion-alloyed compositions due to band anticrossing (BAC) interactions between the introduced defect energy state of O and the extended conduction band edge (CBE) of ZnS that causes a downshift of the CBE. Besides the flexibility of tuning the CBE, this is important to avoid the toxicity of cadmium (Cd) and its compounds. In this article, the band edges of lightly alloyed ZnS₁₋ₓOₓ are computed using an atomistic tight-binding (TB) BAC model. Then, a fitting energy band bowing (EBB) model is developed to capture efficiently the nonlinear variations of their EG and electron affinity energy. For O composition ranging between 0% and 5%, it is observed that the electron affinity energy sharply increases from 3.3 to 3.98 eV. Also, EG drastically reduces from 3.8 to 3.08 eV. Device-wise, by analyzing the effect of dilute O alloys and the doping density of the ZnS buffer layer, it is found that electron transport is remarkably improved with O composition. In ZnS0.95O0.05 alloy with doping density 1 x 10¹⁸ cm⁻³, the maximum power conversion efficiency (PCE) reaches approximately 23.82%.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.2975888</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Affinity ; Alloying ; Atomistic tight-binding (TB) ; band anticrossing (BAC) ; Bowing ; buffer layer ; Buffer layers ; Cadmium compounds ; Composition ; conduction band edge (CBE) ; Conduction bands ; Copper indium gallium selenides ; Density ; Dilution ; Doping ; Electron affinity ; Electron transport ; Energy ; Energy bands ; Energy conversion efficiency ; Maximum power ; Photovoltaic cells ; Solar cells ; Thin films ; thin-film solar cell (TFSC) ; Toxicity ; unusual bandgap bowing</subject><ispartof>IEEE transactions on electron devices, 2020-04, Vol.67 (4), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0563-3141 ; 0000-0001-5030-617X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9031738$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9031738$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alqahtani, Saad M.</creatorcontrib><creatorcontrib>Baloch, Ahmer A. B.</creatorcontrib><creatorcontrib>Ahmed, Shaikh S.</creatorcontrib><creatorcontrib>Alharbi, Fahhad H.</creatorcontrib><title>Dilute Oxygen Alloys of ZnS as a Promising Toxic-Free Buffer Layer for Cu(In, Ga)Se₂ Thin-Film Solar Cells</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Using ZnS as a buffer layer in many thin-film solar cells, such as Cu(In, Ga)Se₂ (CIGS), has not been successful as it usually results in a high barrier that suppresses the flow of electrons to the designated contact. To tackle this issue, we analyze dilute oxygen (O) alloys of ZnS as a buffer layer. It exhibits an unusual energy bandgap (EG) bowing and a sharp increase in electron affinity energy. Such features commonly arise in anion-alloyed compositions due to band anticrossing (BAC) interactions between the introduced defect energy state of O and the extended conduction band edge (CBE) of ZnS that causes a downshift of the CBE. Besides the flexibility of tuning the CBE, this is important to avoid the toxicity of cadmium (Cd) and its compounds. In this article, the band edges of lightly alloyed ZnS₁₋ₓOₓ are computed using an atomistic tight-binding (TB) BAC model. Then, a fitting energy band bowing (EBB) model is developed to capture efficiently the nonlinear variations of their EG and electron affinity energy. For O composition ranging between 0% and 5%, it is observed that the electron affinity energy sharply increases from 3.3 to 3.98 eV. Also, EG drastically reduces from 3.8 to 3.08 eV. Device-wise, by analyzing the effect of dilute O alloys and the doping density of the ZnS buffer layer, it is found that electron transport is remarkably improved with O composition. In ZnS0.95O0.05 alloy with doping density 1 x 10¹⁸ cm⁻³, the maximum power conversion efficiency (PCE) reaches approximately 23.82%.</description><subject>Affinity</subject><subject>Alloying</subject><subject>Atomistic tight-binding (TB)</subject><subject>band anticrossing (BAC)</subject><subject>Bowing</subject><subject>buffer layer</subject><subject>Buffer layers</subject><subject>Cadmium compounds</subject><subject>Composition</subject><subject>conduction band edge (CBE)</subject><subject>Conduction bands</subject><subject>Copper indium gallium selenides</subject><subject>Density</subject><subject>Dilution</subject><subject>Doping</subject><subject>Electron affinity</subject><subject>Electron transport</subject><subject>Energy</subject><subject>Energy bands</subject><subject>Energy conversion efficiency</subject><subject>Maximum power</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Thin films</subject><subject>thin-film solar cell (TFSC)</subject><subject>Toxicity</subject><subject>unusual bandgap bowing</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotkEtLAzEUhYMoWKt7wU3AjYJT85pMsqx9WShU6LhxM6TtTU1JZ2rSgc62P9Vf4kDdnMvhfNzLPQjdU9KjlOjXfDTsMcJIj-ksVUpdoA5N0yzRUshL1CGEqkRzxa_RTYzb1kohWAf5ofP1AfD82GygxH3vqybiyuKvcoFNxAZ_hGrnois3OK-ObpWMAwB-q62FgGemadVWAQ_qp2n5gifmeQG_pxPOv12ZjJ3f4UXlTZuD9_EWXVnjI9z9zy76HI_ywXsym0-mg_4scVQSldiUrMRaC6bXILO1pcoApzJbZjSVknLQ7aPcSAogDIAUKSNmbVcatBYElryLHs9796H6qSEeim1Vh7I9WbC2As5SRrOWejhTDgCKfXA7E5pCE95miv8B79th6A</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Alqahtani, Saad M.</creator><creator>Baloch, Ahmer A. B.</creator><creator>Ahmed, Shaikh S.</creator><creator>Alharbi, Fahhad H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0563-3141</orcidid><orcidid>https://orcid.org/0000-0001-5030-617X</orcidid></search><sort><creationdate>20200401</creationdate><title>Dilute Oxygen Alloys of ZnS as a Promising Toxic-Free Buffer Layer for Cu(In, Ga)Se₂ Thin-Film Solar Cells</title><author>Alqahtani, Saad M. ; Baloch, Ahmer A. B. ; Ahmed, Shaikh S. ; Alharbi, Fahhad H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1608-f50c4d9429de67df18ae3167b7156613e92023a61ee4aee64520adfc9e9940eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Affinity</topic><topic>Alloying</topic><topic>Atomistic tight-binding (TB)</topic><topic>band anticrossing (BAC)</topic><topic>Bowing</topic><topic>buffer layer</topic><topic>Buffer layers</topic><topic>Cadmium compounds</topic><topic>Composition</topic><topic>conduction band edge (CBE)</topic><topic>Conduction bands</topic><topic>Copper indium gallium selenides</topic><topic>Density</topic><topic>Dilution</topic><topic>Doping</topic><topic>Electron affinity</topic><topic>Electron transport</topic><topic>Energy</topic><topic>Energy bands</topic><topic>Energy conversion efficiency</topic><topic>Maximum power</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Thin films</topic><topic>thin-film solar cell (TFSC)</topic><topic>Toxicity</topic><topic>unusual bandgap bowing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alqahtani, Saad M.</creatorcontrib><creatorcontrib>Baloch, Ahmer A. B.</creatorcontrib><creatorcontrib>Ahmed, Shaikh S.</creatorcontrib><creatorcontrib>Alharbi, Fahhad H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alqahtani, Saad M.</au><au>Baloch, Ahmer A. B.</au><au>Ahmed, Shaikh S.</au><au>Alharbi, Fahhad H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dilute Oxygen Alloys of ZnS as a Promising Toxic-Free Buffer Layer for Cu(In, Ga)Se₂ Thin-Film Solar Cells</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>67</volume><issue>4</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Using ZnS as a buffer layer in many thin-film solar cells, such as Cu(In, Ga)Se₂ (CIGS), has not been successful as it usually results in a high barrier that suppresses the flow of electrons to the designated contact. To tackle this issue, we analyze dilute oxygen (O) alloys of ZnS as a buffer layer. It exhibits an unusual energy bandgap (EG) bowing and a sharp increase in electron affinity energy. Such features commonly arise in anion-alloyed compositions due to band anticrossing (BAC) interactions between the introduced defect energy state of O and the extended conduction band edge (CBE) of ZnS that causes a downshift of the CBE. Besides the flexibility of tuning the CBE, this is important to avoid the toxicity of cadmium (Cd) and its compounds. In this article, the band edges of lightly alloyed ZnS₁₋ₓOₓ are computed using an atomistic tight-binding (TB) BAC model. Then, a fitting energy band bowing (EBB) model is developed to capture efficiently the nonlinear variations of their EG and electron affinity energy. For O composition ranging between 0% and 5%, it is observed that the electron affinity energy sharply increases from 3.3 to 3.98 eV. Also, EG drastically reduces from 3.8 to 3.08 eV. Device-wise, by analyzing the effect of dilute O alloys and the doping density of the ZnS buffer layer, it is found that electron transport is remarkably improved with O composition. In ZnS0.95O0.05 alloy with doping density 1 x 10¹⁸ cm⁻³, the maximum power conversion efficiency (PCE) reaches approximately 23.82%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2020.2975888</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0563-3141</orcidid><orcidid>https://orcid.org/0000-0001-5030-617X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2020-04, Vol.67 (4), p.1-8
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_9031738
source IEEE Electronic Library (IEL)
subjects Affinity
Alloying
Atomistic tight-binding (TB)
band anticrossing (BAC)
Bowing
buffer layer
Buffer layers
Cadmium compounds
Composition
conduction band edge (CBE)
Conduction bands
Copper indium gallium selenides
Density
Dilution
Doping
Electron affinity
Electron transport
Energy
Energy bands
Energy conversion efficiency
Maximum power
Photovoltaic cells
Solar cells
Thin films
thin-film solar cell (TFSC)
Toxicity
unusual bandgap bowing
title Dilute Oxygen Alloys of ZnS as a Promising Toxic-Free Buffer Layer for Cu(In, Ga)Se₂ Thin-Film Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dilute%20Oxygen%20Alloys%20of%20ZnS%20as%20a%20Promising%20Toxic-Free%20Buffer%20Layer%20for%20Cu(In,%20Ga)Se%E2%82%82%20Thin-Film%20Solar%20Cells&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Alqahtani,%20Saad%20M.&rft.date=2020-04-01&rft.volume=67&rft.issue=4&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2020.2975888&rft_dat=%3Cproquest_RIE%3E2383325217%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383325217&rft_id=info:pmid/&rft_ieee_id=9031738&rfr_iscdi=true