A weighted distance approach to relevance feedback

Content-based image retrieval systems use low-level features like color and texture for image representation. Given these representations as feature vectors, similarity between images is measured by computing distances in the feature space. Unfortunately, these low-level features cannot always captu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aksoy, S., Haralick, R.M., Cheikh, F.A., Gabbouj, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 815 vol.4
container_issue
container_start_page 812
container_title
container_volume 4
creator Aksoy, S.
Haralick, R.M.
Cheikh, F.A.
Gabbouj, M.
description Content-based image retrieval systems use low-level features like color and texture for image representation. Given these representations as feature vectors, similarity between images is measured by computing distances in the feature space. Unfortunately, these low-level features cannot always capture the high-level concept of similarity in human perception. Relevance feedback tries to improve the performance by allowing iterative retrievals where the feedback information from the user is incorporated into the database search. We present a weighted distance approach where the weights are the ratios of standard deviations of the feature values both for the whole database and also among the images selected as relevant by the user. The feedback is used for both independent and incremental updating of the weights and these weights are used to iteratively refine the effects of different features in the database search. Retrieval performance is evaluated using average precision and progress that are computed on a database of approximately 10,000 images and an average performance improvement of 19% is obtained after the first iteration.
doi_str_mv 10.1109/ICPR.2000.903041
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_903041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>903041</ieee_id><sourcerecordid>903041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1081-3adad3af219832376b02beeaab55dee978d448bb1f58e10612ab8a9a10363293</originalsourceid><addsrcrecordid>eNotj1tLw0AQhRcvYKx9F5_2DyTO7GSzu48leCkUFOl7mc1ObLTakATFf2-xwoED38PhO0pdIxSIEG6X9fNLYQCgCEBQ4onKjCfMXensqZoH58FVwYI75ExlCBbzsrJ4oS7H8Q3AAFmfKbPQ39K9bidJOnXjxJ-NaO77Yc_NVk97PchOvv5oK5IiN-9X6rzl3Sjz_56p9f3dun7MV08Py3qxyhsEjzlx4kTcGgyeDLkqgokizNHaJHIQTGXpY8TWekGo0HD0HBiBKjKBZurmONuJyKYfug8efjbHs_QLQqhFBQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A weighted distance approach to relevance feedback</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Aksoy, S. ; Haralick, R.M. ; Cheikh, F.A. ; Gabbouj, M.</creator><creatorcontrib>Aksoy, S. ; Haralick, R.M. ; Cheikh, F.A. ; Gabbouj, M.</creatorcontrib><description>Content-based image retrieval systems use low-level features like color and texture for image representation. Given these representations as feature vectors, similarity between images is measured by computing distances in the feature space. Unfortunately, these low-level features cannot always capture the high-level concept of similarity in human perception. Relevance feedback tries to improve the performance by allowing iterative retrievals where the feedback information from the user is incorporated into the database search. We present a weighted distance approach where the weights are the ratios of standard deviations of the feature values both for the whole database and also among the images selected as relevant by the user. The feedback is used for both independent and incremental updating of the weights and these weights are used to iteratively refine the effects of different features in the database search. Retrieval performance is evaluated using average precision and progress that are computed on a database of approximately 10,000 images and an average performance improvement of 19% is obtained after the first iteration.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9780769507507</identifier><identifier>ISBN: 0769507506</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2000.903041</identifier><language>eng</language><publisher>IEEE</publisher><subject>Content based retrieval ; Feedback ; Humans ; Image databases ; Image retrieval ; Information retrieval ; Laboratories ; Space technology ; Spatial databases ; Vectors</subject><ispartof>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.4, p.812-815 vol.4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1081-3adad3af219832376b02beeaab55dee978d448bb1f58e10612ab8a9a10363293</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/903041$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/903041$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aksoy, S.</creatorcontrib><creatorcontrib>Haralick, R.M.</creatorcontrib><creatorcontrib>Cheikh, F.A.</creatorcontrib><creatorcontrib>Gabbouj, M.</creatorcontrib><title>A weighted distance approach to relevance feedback</title><title>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</title><addtitle>ICPR</addtitle><description>Content-based image retrieval systems use low-level features like color and texture for image representation. Given these representations as feature vectors, similarity between images is measured by computing distances in the feature space. Unfortunately, these low-level features cannot always capture the high-level concept of similarity in human perception. Relevance feedback tries to improve the performance by allowing iterative retrievals where the feedback information from the user is incorporated into the database search. We present a weighted distance approach where the weights are the ratios of standard deviations of the feature values both for the whole database and also among the images selected as relevant by the user. The feedback is used for both independent and incremental updating of the weights and these weights are used to iteratively refine the effects of different features in the database search. Retrieval performance is evaluated using average precision and progress that are computed on a database of approximately 10,000 images and an average performance improvement of 19% is obtained after the first iteration.</description><subject>Content based retrieval</subject><subject>Feedback</subject><subject>Humans</subject><subject>Image databases</subject><subject>Image retrieval</subject><subject>Information retrieval</subject><subject>Laboratories</subject><subject>Space technology</subject><subject>Spatial databases</subject><subject>Vectors</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9780769507507</isbn><isbn>0769507506</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj1tLw0AQhRcvYKx9F5_2DyTO7GSzu48leCkUFOl7mc1ObLTakATFf2-xwoED38PhO0pdIxSIEG6X9fNLYQCgCEBQ4onKjCfMXensqZoH58FVwYI75ExlCBbzsrJ4oS7H8Q3AAFmfKbPQ39K9bidJOnXjxJ-NaO77Yc_NVk97PchOvv5oK5IiN-9X6rzl3Sjz_56p9f3dun7MV08Py3qxyhsEjzlx4kTcGgyeDLkqgokizNHaJHIQTGXpY8TWekGo0HD0HBiBKjKBZurmONuJyKYfug8efjbHs_QLQqhFBQ</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Aksoy, S.</creator><creator>Haralick, R.M.</creator><creator>Cheikh, F.A.</creator><creator>Gabbouj, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>A weighted distance approach to relevance feedback</title><author>Aksoy, S. ; Haralick, R.M. ; Cheikh, F.A. ; Gabbouj, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1081-3adad3af219832376b02beeaab55dee978d448bb1f58e10612ab8a9a10363293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Content based retrieval</topic><topic>Feedback</topic><topic>Humans</topic><topic>Image databases</topic><topic>Image retrieval</topic><topic>Information retrieval</topic><topic>Laboratories</topic><topic>Space technology</topic><topic>Spatial databases</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Aksoy, S.</creatorcontrib><creatorcontrib>Haralick, R.M.</creatorcontrib><creatorcontrib>Cheikh, F.A.</creatorcontrib><creatorcontrib>Gabbouj, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aksoy, S.</au><au>Haralick, R.M.</au><au>Cheikh, F.A.</au><au>Gabbouj, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A weighted distance approach to relevance feedback</atitle><btitle>Proceedings 15th International Conference on Pattern Recognition. ICPR-2000</btitle><stitle>ICPR</stitle><date>2000</date><risdate>2000</risdate><volume>4</volume><spage>812</spage><epage>815 vol.4</epage><pages>812-815 vol.4</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9780769507507</isbn><isbn>0769507506</isbn><abstract>Content-based image retrieval systems use low-level features like color and texture for image representation. Given these representations as feature vectors, similarity between images is measured by computing distances in the feature space. Unfortunately, these low-level features cannot always capture the high-level concept of similarity in human perception. Relevance feedback tries to improve the performance by allowing iterative retrievals where the feedback information from the user is incorporated into the database search. We present a weighted distance approach where the weights are the ratios of standard deviations of the feature values both for the whole database and also among the images selected as relevant by the user. The feedback is used for both independent and incremental updating of the weights and these weights are used to iteratively refine the effects of different features in the database search. Retrieval performance is evaluated using average precision and progress that are computed on a database of approximately 10,000 images and an average performance improvement of 19% is obtained after the first iteration.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2000.903041</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, Vol.4, p.812-815 vol.4
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_903041
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Content based retrieval
Feedback
Humans
Image databases
Image retrieval
Information retrieval
Laboratories
Space technology
Spatial databases
Vectors
title A weighted distance approach to relevance feedback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20weighted%20distance%20approach%20to%20relevance%20feedback&rft.btitle=Proceedings%2015th%20International%20Conference%20on%20Pattern%20Recognition.%20ICPR-2000&rft.au=Aksoy,%20S.&rft.date=2000&rft.volume=4&rft.spage=812&rft.epage=815%20vol.4&rft.pages=812-815%20vol.4&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9780769507507&rft.isbn_list=0769507506&rft_id=info:doi/10.1109/ICPR.2000.903041&rft_dat=%3Cieee_6IE%3E903041%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=903041&rfr_iscdi=true