Monitoring Embedded Flow Networks Using Graph Fourier Transform Enabled Sparse Molecular Relays

Many embedded networks are difficult to monitor, such as water distribution networks (WDNs). A key challenge is how to use minimum sparse sensors to measure contamination and transmit contamination data to a hub for system analysis. Existing approaches deploy sensors using multi-objective optimisati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2020-05, Vol.24 (5), p.986-990
Hauptverfasser: Wei, Zhuangkun, Pagani, Alessio, Li, Bin, Guo, Weisi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 990
container_issue 5
container_start_page 986
container_title IEEE communications letters
container_volume 24
creator Wei, Zhuangkun
Pagani, Alessio
Li, Bin
Guo, Weisi
description Many embedded networks are difficult to monitor, such as water distribution networks (WDNs). A key challenge is how to use minimum sparse sensors to measure contamination and transmit contamination data to a hub for system analysis. Existing approaches deploy sensors using multi-objective optimisation and transmit the data using ground penetrating waves or fixed-line access. Here, for the first time, we introduce a novel molecular communication relay system, which is able to transmit the data report to the hub via the water-flow of WDN itself, and avoids the complex ground penetrating techniques. A water flow data-driven Graph Fourier Transform (GFT) sampling method is designed to inform the invariant orthogonal locations for deploying the molecular relay sensors. Each sensor encodes information via a DNA molecule that enables the common hub to reconstruct the full contamination information. Numerical simulation validates the proposed system, providing a pathway to integrate MC into macro-scale Digital Twin platforms for infrastructure monitoring.
doi_str_mv 10.1109/LCOMM.2020.2978835
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9026801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9026801</ieee_id><sourcerecordid>2401142617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-51a9a644402a8ecc00238bdbf63fc19cf7b0baedf37b310184a909c3ccfd946b3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQQBujiYj-Ab008bw4bfejPRoCaMJKonBu2m6ri8t2bSGEf-8ixMvMJDNvZvIQuicwIgTE03y8KMsRBQojKgrOWXaBBiTLeEL7cNnXwEVSFIJfo5sY1wDAaUYGSJa-rbc-1O0nnmy0rSpb4Wnj9_jNbvc-fEe8isfmLKjuC0_9LtQ24GVQbXQ-bPCkVbrpmY9OhWhx6Rtrdo0K-N026hBv0ZVTTbR35zxEq-lkOX5J5ovZ6_h5nhjGxDbJiBIqT9MUqOLWGADKuK60y5kzRBhXaNDKVo4VmhEgPFUChGHGuEqkuWZD9Hja2wX_s7NxK9f9q21_UtIUCElpTop-ip6mTPAxButkF-qNCgdJQB5Fyj-R8ihSnkX20MMJqq21_4AAmnMg7BfmSXAu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401142617</pqid></control><display><type>article</type><title>Monitoring Embedded Flow Networks Using Graph Fourier Transform Enabled Sparse Molecular Relays</title><source>IEEE Electronic Library (IEL)</source><creator>Wei, Zhuangkun ; Pagani, Alessio ; Li, Bin ; Guo, Weisi</creator><creatorcontrib>Wei, Zhuangkun ; Pagani, Alessio ; Li, Bin ; Guo, Weisi</creatorcontrib><description>Many embedded networks are difficult to monitor, such as water distribution networks (WDNs). A key challenge is how to use minimum sparse sensors to measure contamination and transmit contamination data to a hub for system analysis. Existing approaches deploy sensors using multi-objective optimisation and transmit the data using ground penetrating waves or fixed-line access. Here, for the first time, we introduce a novel molecular communication relay system, which is able to transmit the data report to the hub via the water-flow of WDN itself, and avoids the complex ground penetrating techniques. A water flow data-driven Graph Fourier Transform (GFT) sampling method is designed to inform the invariant orthogonal locations for deploying the molecular relay sensors. Each sensor encodes information via a DNA molecule that enables the common hub to reconstruct the full contamination information. Numerical simulation validates the proposed system, providing a pathway to integrate MC into macro-scale Digital Twin platforms for infrastructure monitoring.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2020.2978835</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Communications systems ; Computer simulation ; Contamination ; Fourier transforms ; graph Fourier transform ; Molecular communication ; Monitoring ; Multiple objective analysis ; network dynamics ; Networks ; Optimization ; Relay systems ; Relays ; sensor deployment ; Sensors ; Signal reconstruction ; Systems analysis ; Water distribution ; water distribution network ; Water engineering ; Water flow ; Water pollution</subject><ispartof>IEEE communications letters, 2020-05, Vol.24 (5), p.986-990</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-51a9a644402a8ecc00238bdbf63fc19cf7b0baedf37b310184a909c3ccfd946b3</citedby><cites>FETCH-LOGICAL-c339t-51a9a644402a8ecc00238bdbf63fc19cf7b0baedf37b310184a909c3ccfd946b3</cites><orcidid>0000-0003-3524-3953 ; 0000-0002-8404-8890 ; 0000-0002-1998-819X ; 0000-0002-8073-7859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9026801$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9026801$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei, Zhuangkun</creatorcontrib><creatorcontrib>Pagani, Alessio</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Guo, Weisi</creatorcontrib><title>Monitoring Embedded Flow Networks Using Graph Fourier Transform Enabled Sparse Molecular Relays</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>Many embedded networks are difficult to monitor, such as water distribution networks (WDNs). A key challenge is how to use minimum sparse sensors to measure contamination and transmit contamination data to a hub for system analysis. Existing approaches deploy sensors using multi-objective optimisation and transmit the data using ground penetrating waves or fixed-line access. Here, for the first time, we introduce a novel molecular communication relay system, which is able to transmit the data report to the hub via the water-flow of WDN itself, and avoids the complex ground penetrating techniques. A water flow data-driven Graph Fourier Transform (GFT) sampling method is designed to inform the invariant orthogonal locations for deploying the molecular relay sensors. Each sensor encodes information via a DNA molecule that enables the common hub to reconstruct the full contamination information. Numerical simulation validates the proposed system, providing a pathway to integrate MC into macro-scale Digital Twin platforms for infrastructure monitoring.</description><subject>Communications systems</subject><subject>Computer simulation</subject><subject>Contamination</subject><subject>Fourier transforms</subject><subject>graph Fourier transform</subject><subject>Molecular communication</subject><subject>Monitoring</subject><subject>Multiple objective analysis</subject><subject>network dynamics</subject><subject>Networks</subject><subject>Optimization</subject><subject>Relay systems</subject><subject>Relays</subject><subject>sensor deployment</subject><subject>Sensors</subject><subject>Signal reconstruction</subject><subject>Systems analysis</subject><subject>Water distribution</subject><subject>water distribution network</subject><subject>Water engineering</subject><subject>Water flow</subject><subject>Water pollution</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQQBujiYj-Ab008bw4bfejPRoCaMJKonBu2m6ri8t2bSGEf-8ixMvMJDNvZvIQuicwIgTE03y8KMsRBQojKgrOWXaBBiTLeEL7cNnXwEVSFIJfo5sY1wDAaUYGSJa-rbc-1O0nnmy0rSpb4Wnj9_jNbvc-fEe8isfmLKjuC0_9LtQ24GVQbXQ-bPCkVbrpmY9OhWhx6Rtrdo0K-N026hBv0ZVTTbR35zxEq-lkOX5J5ovZ6_h5nhjGxDbJiBIqT9MUqOLWGADKuK60y5kzRBhXaNDKVo4VmhEgPFUChGHGuEqkuWZD9Hja2wX_s7NxK9f9q21_UtIUCElpTop-ip6mTPAxButkF-qNCgdJQB5Fyj-R8ihSnkX20MMJqq21_4AAmnMg7BfmSXAu</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Wei, Zhuangkun</creator><creator>Pagani, Alessio</creator><creator>Li, Bin</creator><creator>Guo, Weisi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3524-3953</orcidid><orcidid>https://orcid.org/0000-0002-8404-8890</orcidid><orcidid>https://orcid.org/0000-0002-1998-819X</orcidid><orcidid>https://orcid.org/0000-0002-8073-7859</orcidid></search><sort><creationdate>20200501</creationdate><title>Monitoring Embedded Flow Networks Using Graph Fourier Transform Enabled Sparse Molecular Relays</title><author>Wei, Zhuangkun ; Pagani, Alessio ; Li, Bin ; Guo, Weisi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-51a9a644402a8ecc00238bdbf63fc19cf7b0baedf37b310184a909c3ccfd946b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Communications systems</topic><topic>Computer simulation</topic><topic>Contamination</topic><topic>Fourier transforms</topic><topic>graph Fourier transform</topic><topic>Molecular communication</topic><topic>Monitoring</topic><topic>Multiple objective analysis</topic><topic>network dynamics</topic><topic>Networks</topic><topic>Optimization</topic><topic>Relay systems</topic><topic>Relays</topic><topic>sensor deployment</topic><topic>Sensors</topic><topic>Signal reconstruction</topic><topic>Systems analysis</topic><topic>Water distribution</topic><topic>water distribution network</topic><topic>Water engineering</topic><topic>Water flow</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Zhuangkun</creatorcontrib><creatorcontrib>Pagani, Alessio</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Guo, Weisi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Zhuangkun</au><au>Pagani, Alessio</au><au>Li, Bin</au><au>Guo, Weisi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring Embedded Flow Networks Using Graph Fourier Transform Enabled Sparse Molecular Relays</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>24</volume><issue>5</issue><spage>986</spage><epage>990</epage><pages>986-990</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Many embedded networks are difficult to monitor, such as water distribution networks (WDNs). A key challenge is how to use minimum sparse sensors to measure contamination and transmit contamination data to a hub for system analysis. Existing approaches deploy sensors using multi-objective optimisation and transmit the data using ground penetrating waves or fixed-line access. Here, for the first time, we introduce a novel molecular communication relay system, which is able to transmit the data report to the hub via the water-flow of WDN itself, and avoids the complex ground penetrating techniques. A water flow data-driven Graph Fourier Transform (GFT) sampling method is designed to inform the invariant orthogonal locations for deploying the molecular relay sensors. Each sensor encodes information via a DNA molecule that enables the common hub to reconstruct the full contamination information. Numerical simulation validates the proposed system, providing a pathway to integrate MC into macro-scale Digital Twin platforms for infrastructure monitoring.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2020.2978835</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3524-3953</orcidid><orcidid>https://orcid.org/0000-0002-8404-8890</orcidid><orcidid>https://orcid.org/0000-0002-1998-819X</orcidid><orcidid>https://orcid.org/0000-0002-8073-7859</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2020-05, Vol.24 (5), p.986-990
issn 1089-7798
1558-2558
language eng
recordid cdi_ieee_primary_9026801
source IEEE Electronic Library (IEL)
subjects Communications systems
Computer simulation
Contamination
Fourier transforms
graph Fourier transform
Molecular communication
Monitoring
Multiple objective analysis
network dynamics
Networks
Optimization
Relay systems
Relays
sensor deployment
Sensors
Signal reconstruction
Systems analysis
Water distribution
water distribution network
Water engineering
Water flow
Water pollution
title Monitoring Embedded Flow Networks Using Graph Fourier Transform Enabled Sparse Molecular Relays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20Embedded%20Flow%20Networks%20Using%20Graph%20Fourier%20Transform%20Enabled%20Sparse%20Molecular%20Relays&rft.jtitle=IEEE%20communications%20letters&rft.au=Wei,%20Zhuangkun&rft.date=2020-05-01&rft.volume=24&rft.issue=5&rft.spage=986&rft.epage=990&rft.pages=986-990&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2020.2978835&rft_dat=%3Cproquest_RIE%3E2401142617%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401142617&rft_id=info:pmid/&rft_ieee_id=9026801&rfr_iscdi=true