Monitoring Embedded Flow Networks Using Graph Fourier Transform Enabled Sparse Molecular Relays
Many embedded networks are difficult to monitor, such as water distribution networks (WDNs). A key challenge is how to use minimum sparse sensors to measure contamination and transmit contamination data to a hub for system analysis. Existing approaches deploy sensors using multi-objective optimisati...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2020-05, Vol.24 (5), p.986-990 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 990 |
---|---|
container_issue | 5 |
container_start_page | 986 |
container_title | IEEE communications letters |
container_volume | 24 |
creator | Wei, Zhuangkun Pagani, Alessio Li, Bin Guo, Weisi |
description | Many embedded networks are difficult to monitor, such as water distribution networks (WDNs). A key challenge is how to use minimum sparse sensors to measure contamination and transmit contamination data to a hub for system analysis. Existing approaches deploy sensors using multi-objective optimisation and transmit the data using ground penetrating waves or fixed-line access. Here, for the first time, we introduce a novel molecular communication relay system, which is able to transmit the data report to the hub via the water-flow of WDN itself, and avoids the complex ground penetrating techniques. A water flow data-driven Graph Fourier Transform (GFT) sampling method is designed to inform the invariant orthogonal locations for deploying the molecular relay sensors. Each sensor encodes information via a DNA molecule that enables the common hub to reconstruct the full contamination information. Numerical simulation validates the proposed system, providing a pathway to integrate MC into macro-scale Digital Twin platforms for infrastructure monitoring. |
doi_str_mv | 10.1109/LCOMM.2020.2978835 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9026801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9026801</ieee_id><sourcerecordid>2401142617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-51a9a644402a8ecc00238bdbf63fc19cf7b0baedf37b310184a909c3ccfd946b3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQQBujiYj-Ab008bw4bfejPRoCaMJKonBu2m6ri8t2bSGEf-8ixMvMJDNvZvIQuicwIgTE03y8KMsRBQojKgrOWXaBBiTLeEL7cNnXwEVSFIJfo5sY1wDAaUYGSJa-rbc-1O0nnmy0rSpb4Wnj9_jNbvc-fEe8isfmLKjuC0_9LtQ24GVQbXQ-bPCkVbrpmY9OhWhx6Rtrdo0K-N026hBv0ZVTTbR35zxEq-lkOX5J5ovZ6_h5nhjGxDbJiBIqT9MUqOLWGADKuK60y5kzRBhXaNDKVo4VmhEgPFUChGHGuEqkuWZD9Hja2wX_s7NxK9f9q21_UtIUCElpTop-ip6mTPAxButkF-qNCgdJQB5Fyj-R8ihSnkX20MMJqq21_4AAmnMg7BfmSXAu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401142617</pqid></control><display><type>article</type><title>Monitoring Embedded Flow Networks Using Graph Fourier Transform Enabled Sparse Molecular Relays</title><source>IEEE Electronic Library (IEL)</source><creator>Wei, Zhuangkun ; Pagani, Alessio ; Li, Bin ; Guo, Weisi</creator><creatorcontrib>Wei, Zhuangkun ; Pagani, Alessio ; Li, Bin ; Guo, Weisi</creatorcontrib><description>Many embedded networks are difficult to monitor, such as water distribution networks (WDNs). A key challenge is how to use minimum sparse sensors to measure contamination and transmit contamination data to a hub for system analysis. Existing approaches deploy sensors using multi-objective optimisation and transmit the data using ground penetrating waves or fixed-line access. Here, for the first time, we introduce a novel molecular communication relay system, which is able to transmit the data report to the hub via the water-flow of WDN itself, and avoids the complex ground penetrating techniques. A water flow data-driven Graph Fourier Transform (GFT) sampling method is designed to inform the invariant orthogonal locations for deploying the molecular relay sensors. Each sensor encodes information via a DNA molecule that enables the common hub to reconstruct the full contamination information. Numerical simulation validates the proposed system, providing a pathway to integrate MC into macro-scale Digital Twin platforms for infrastructure monitoring.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2020.2978835</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Communications systems ; Computer simulation ; Contamination ; Fourier transforms ; graph Fourier transform ; Molecular communication ; Monitoring ; Multiple objective analysis ; network dynamics ; Networks ; Optimization ; Relay systems ; Relays ; sensor deployment ; Sensors ; Signal reconstruction ; Systems analysis ; Water distribution ; water distribution network ; Water engineering ; Water flow ; Water pollution</subject><ispartof>IEEE communications letters, 2020-05, Vol.24 (5), p.986-990</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-51a9a644402a8ecc00238bdbf63fc19cf7b0baedf37b310184a909c3ccfd946b3</citedby><cites>FETCH-LOGICAL-c339t-51a9a644402a8ecc00238bdbf63fc19cf7b0baedf37b310184a909c3ccfd946b3</cites><orcidid>0000-0003-3524-3953 ; 0000-0002-8404-8890 ; 0000-0002-1998-819X ; 0000-0002-8073-7859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9026801$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9026801$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei, Zhuangkun</creatorcontrib><creatorcontrib>Pagani, Alessio</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Guo, Weisi</creatorcontrib><title>Monitoring Embedded Flow Networks Using Graph Fourier Transform Enabled Sparse Molecular Relays</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>Many embedded networks are difficult to monitor, such as water distribution networks (WDNs). A key challenge is how to use minimum sparse sensors to measure contamination and transmit contamination data to a hub for system analysis. Existing approaches deploy sensors using multi-objective optimisation and transmit the data using ground penetrating waves or fixed-line access. Here, for the first time, we introduce a novel molecular communication relay system, which is able to transmit the data report to the hub via the water-flow of WDN itself, and avoids the complex ground penetrating techniques. A water flow data-driven Graph Fourier Transform (GFT) sampling method is designed to inform the invariant orthogonal locations for deploying the molecular relay sensors. Each sensor encodes information via a DNA molecule that enables the common hub to reconstruct the full contamination information. Numerical simulation validates the proposed system, providing a pathway to integrate MC into macro-scale Digital Twin platforms for infrastructure monitoring.</description><subject>Communications systems</subject><subject>Computer simulation</subject><subject>Contamination</subject><subject>Fourier transforms</subject><subject>graph Fourier transform</subject><subject>Molecular communication</subject><subject>Monitoring</subject><subject>Multiple objective analysis</subject><subject>network dynamics</subject><subject>Networks</subject><subject>Optimization</subject><subject>Relay systems</subject><subject>Relays</subject><subject>sensor deployment</subject><subject>Sensors</subject><subject>Signal reconstruction</subject><subject>Systems analysis</subject><subject>Water distribution</subject><subject>water distribution network</subject><subject>Water engineering</subject><subject>Water flow</subject><subject>Water pollution</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQQBujiYj-Ab008bw4bfejPRoCaMJKonBu2m6ri8t2bSGEf-8ixMvMJDNvZvIQuicwIgTE03y8KMsRBQojKgrOWXaBBiTLeEL7cNnXwEVSFIJfo5sY1wDAaUYGSJa-rbc-1O0nnmy0rSpb4Wnj9_jNbvc-fEe8isfmLKjuC0_9LtQ24GVQbXQ-bPCkVbrpmY9OhWhx6Rtrdo0K-N026hBv0ZVTTbR35zxEq-lkOX5J5ovZ6_h5nhjGxDbJiBIqT9MUqOLWGADKuK60y5kzRBhXaNDKVo4VmhEgPFUChGHGuEqkuWZD9Hja2wX_s7NxK9f9q21_UtIUCElpTop-ip6mTPAxButkF-qNCgdJQB5Fyj-R8ihSnkX20MMJqq21_4AAmnMg7BfmSXAu</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Wei, Zhuangkun</creator><creator>Pagani, Alessio</creator><creator>Li, Bin</creator><creator>Guo, Weisi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3524-3953</orcidid><orcidid>https://orcid.org/0000-0002-8404-8890</orcidid><orcidid>https://orcid.org/0000-0002-1998-819X</orcidid><orcidid>https://orcid.org/0000-0002-8073-7859</orcidid></search><sort><creationdate>20200501</creationdate><title>Monitoring Embedded Flow Networks Using Graph Fourier Transform Enabled Sparse Molecular Relays</title><author>Wei, Zhuangkun ; Pagani, Alessio ; Li, Bin ; Guo, Weisi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-51a9a644402a8ecc00238bdbf63fc19cf7b0baedf37b310184a909c3ccfd946b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Communications systems</topic><topic>Computer simulation</topic><topic>Contamination</topic><topic>Fourier transforms</topic><topic>graph Fourier transform</topic><topic>Molecular communication</topic><topic>Monitoring</topic><topic>Multiple objective analysis</topic><topic>network dynamics</topic><topic>Networks</topic><topic>Optimization</topic><topic>Relay systems</topic><topic>Relays</topic><topic>sensor deployment</topic><topic>Sensors</topic><topic>Signal reconstruction</topic><topic>Systems analysis</topic><topic>Water distribution</topic><topic>water distribution network</topic><topic>Water engineering</topic><topic>Water flow</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Zhuangkun</creatorcontrib><creatorcontrib>Pagani, Alessio</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Guo, Weisi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Zhuangkun</au><au>Pagani, Alessio</au><au>Li, Bin</au><au>Guo, Weisi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring Embedded Flow Networks Using Graph Fourier Transform Enabled Sparse Molecular Relays</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>24</volume><issue>5</issue><spage>986</spage><epage>990</epage><pages>986-990</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Many embedded networks are difficult to monitor, such as water distribution networks (WDNs). A key challenge is how to use minimum sparse sensors to measure contamination and transmit contamination data to a hub for system analysis. Existing approaches deploy sensors using multi-objective optimisation and transmit the data using ground penetrating waves or fixed-line access. Here, for the first time, we introduce a novel molecular communication relay system, which is able to transmit the data report to the hub via the water-flow of WDN itself, and avoids the complex ground penetrating techniques. A water flow data-driven Graph Fourier Transform (GFT) sampling method is designed to inform the invariant orthogonal locations for deploying the molecular relay sensors. Each sensor encodes information via a DNA molecule that enables the common hub to reconstruct the full contamination information. Numerical simulation validates the proposed system, providing a pathway to integrate MC into macro-scale Digital Twin platforms for infrastructure monitoring.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2020.2978835</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3524-3953</orcidid><orcidid>https://orcid.org/0000-0002-8404-8890</orcidid><orcidid>https://orcid.org/0000-0002-1998-819X</orcidid><orcidid>https://orcid.org/0000-0002-8073-7859</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2020-05, Vol.24 (5), p.986-990 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_ieee_primary_9026801 |
source | IEEE Electronic Library (IEL) |
subjects | Communications systems Computer simulation Contamination Fourier transforms graph Fourier transform Molecular communication Monitoring Multiple objective analysis network dynamics Networks Optimization Relay systems Relays sensor deployment Sensors Signal reconstruction Systems analysis Water distribution water distribution network Water engineering Water flow Water pollution |
title | Monitoring Embedded Flow Networks Using Graph Fourier Transform Enabled Sparse Molecular Relays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20Embedded%20Flow%20Networks%20Using%20Graph%20Fourier%20Transform%20Enabled%20Sparse%20Molecular%20Relays&rft.jtitle=IEEE%20communications%20letters&rft.au=Wei,%20Zhuangkun&rft.date=2020-05-01&rft.volume=24&rft.issue=5&rft.spage=986&rft.epage=990&rft.pages=986-990&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2020.2978835&rft_dat=%3Cproquest_RIE%3E2401142617%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401142617&rft_id=info:pmid/&rft_ieee_id=9026801&rfr_iscdi=true |