Critical area based yield prediction using in-line defect classification information [DRAMs]
Optically measured in-line defect data is used for critical area analysis based yield prediction. Because this data can be noisy, however, data can be filtered using kill ratios established from in-line defect to bitmap correlation by mask layer on arrayed devices. This paper reports results from in...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | |
container_start_page | 83 |
container_title | |
container_volume | |
creator | Segal, J. Sagatelian, A. Hodgkins, B. Ben Chu Singh, T. Berman, H. |
description | Optically measured in-line defect data is used for critical area analysis based yield prediction. Because this data can be noisy, however, data can be filtered using kill ratios established from in-line defect to bitmap correlation by mask layer on arrayed devices. This paper reports results from increased granularity of the kill ratio analysis: in-line defect classifications are considered and individual kill ratios for each classification are calculated and used for yield modeling. Furthermore, performing automatic signature classification on the bitmaps and signature to defect correlation adds valuable insight into yield loss mechanisms and improves the accuracy of the yield model. |
doi_str_mv | 10.1109/ASMC.2000.902563 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_902563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>902563</ieee_id><sourcerecordid>902563</sourcerecordid><originalsourceid>FETCH-LOGICAL-i240t-7377bf0daeb335bd81a55fa3005e9d5b81c336bf5b5aeee30725c95a6506ec823</originalsourceid><addsrcrecordid>eNotUE1LAzEUDH6ApfYunvIHtr4k-5LNsaxahRbBj5NKycdbiWy3ZbMe-u9drDAwb5iZdxjGrgTMhQB7s3hZ13MJAHMLErU6YROpjC60tuaUzaypYIRCKwWesYkYVVGZUl2wWc7fYw9KLE1lJuyj7tOQgmu568lx7zJFfkjURr7vKaYwpF3Hf3LqvnjqijZ1xCM1FAYeWpdzasbyXyZ1za7fHu_32-fFOn9esvPGtZlm_zxlb_d3r_VDsXpaPtaLVZFkCUNhlDG-gejIK4U-VsIhNk4BINmIvhJBKe0b9OiISIGRGCw6jaApVFJN2fXxbxrtzb5PW9cfNsdp1C94DlZB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Critical area based yield prediction using in-line defect classification information [DRAMs]</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Segal, J. ; Sagatelian, A. ; Hodgkins, B. ; Ben Chu ; Singh, T. ; Berman, H.</creator><creatorcontrib>Segal, J. ; Sagatelian, A. ; Hodgkins, B. ; Ben Chu ; Singh, T. ; Berman, H.</creatorcontrib><description>Optically measured in-line defect data is used for critical area analysis based yield prediction. Because this data can be noisy, however, data can be filtered using kill ratios established from in-line defect to bitmap correlation by mask layer on arrayed devices. This paper reports results from increased granularity of the kill ratio analysis: in-line defect classifications are considered and individual kill ratios for each classification are calculated and used for yield modeling. Furthermore, performing automatic signature classification on the bitmaps and signature to defect correlation adds valuable insight into yield loss mechanisms and improves the accuracy of the yield model.</description><identifier>ISSN: 1078-8743</identifier><identifier>ISBN: 9780780359215</identifier><identifier>ISBN: 0780359216</identifier><identifier>EISSN: 2376-6697</identifier><identifier>DOI: 10.1109/ASMC.2000.902563</identifier><language>eng</language><publisher>IEEE</publisher><subject>Area measurement ; Data analysis ; Failure analysis ; Information analysis ; Optical detectors ; Optical filters ; Optical losses ; Optical noise ; Semiconductor device noise</subject><ispartof>2000 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop. ASMC 2000 (Cat. No.00CH37072), 2000, p.83-88</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/902563$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/902563$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Segal, J.</creatorcontrib><creatorcontrib>Sagatelian, A.</creatorcontrib><creatorcontrib>Hodgkins, B.</creatorcontrib><creatorcontrib>Ben Chu</creatorcontrib><creatorcontrib>Singh, T.</creatorcontrib><creatorcontrib>Berman, H.</creatorcontrib><title>Critical area based yield prediction using in-line defect classification information [DRAMs]</title><title>2000 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop. ASMC 2000 (Cat. No.00CH37072)</title><addtitle>ASMC</addtitle><description>Optically measured in-line defect data is used for critical area analysis based yield prediction. Because this data can be noisy, however, data can be filtered using kill ratios established from in-line defect to bitmap correlation by mask layer on arrayed devices. This paper reports results from increased granularity of the kill ratio analysis: in-line defect classifications are considered and individual kill ratios for each classification are calculated and used for yield modeling. Furthermore, performing automatic signature classification on the bitmaps and signature to defect correlation adds valuable insight into yield loss mechanisms and improves the accuracy of the yield model.</description><subject>Area measurement</subject><subject>Data analysis</subject><subject>Failure analysis</subject><subject>Information analysis</subject><subject>Optical detectors</subject><subject>Optical filters</subject><subject>Optical losses</subject><subject>Optical noise</subject><subject>Semiconductor device noise</subject><issn>1078-8743</issn><issn>2376-6697</issn><isbn>9780780359215</isbn><isbn>0780359216</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUE1LAzEUDH6ApfYunvIHtr4k-5LNsaxahRbBj5NKycdbiWy3ZbMe-u9drDAwb5iZdxjGrgTMhQB7s3hZ13MJAHMLErU6YROpjC60tuaUzaypYIRCKwWesYkYVVGZUl2wWc7fYw9KLE1lJuyj7tOQgmu568lx7zJFfkjURr7vKaYwpF3Hf3LqvnjqijZ1xCM1FAYeWpdzasbyXyZ1za7fHu_32-fFOn9esvPGtZlm_zxlb_d3r_VDsXpaPtaLVZFkCUNhlDG-gejIK4U-VsIhNk4BINmIvhJBKe0b9OiISIGRGCw6jaApVFJN2fXxbxrtzb5PW9cfNsdp1C94DlZB</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Segal, J.</creator><creator>Sagatelian, A.</creator><creator>Hodgkins, B.</creator><creator>Ben Chu</creator><creator>Singh, T.</creator><creator>Berman, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Critical area based yield prediction using in-line defect classification information [DRAMs]</title><author>Segal, J. ; Sagatelian, A. ; Hodgkins, B. ; Ben Chu ; Singh, T. ; Berman, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i240t-7377bf0daeb335bd81a55fa3005e9d5b81c336bf5b5aeee30725c95a6506ec823</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Area measurement</topic><topic>Data analysis</topic><topic>Failure analysis</topic><topic>Information analysis</topic><topic>Optical detectors</topic><topic>Optical filters</topic><topic>Optical losses</topic><topic>Optical noise</topic><topic>Semiconductor device noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Segal, J.</creatorcontrib><creatorcontrib>Sagatelian, A.</creatorcontrib><creatorcontrib>Hodgkins, B.</creatorcontrib><creatorcontrib>Ben Chu</creatorcontrib><creatorcontrib>Singh, T.</creatorcontrib><creatorcontrib>Berman, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Segal, J.</au><au>Sagatelian, A.</au><au>Hodgkins, B.</au><au>Ben Chu</au><au>Singh, T.</au><au>Berman, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Critical area based yield prediction using in-line defect classification information [DRAMs]</atitle><btitle>2000 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop. ASMC 2000 (Cat. No.00CH37072)</btitle><stitle>ASMC</stitle><date>2000</date><risdate>2000</risdate><spage>83</spage><epage>88</epage><pages>83-88</pages><issn>1078-8743</issn><eissn>2376-6697</eissn><isbn>9780780359215</isbn><isbn>0780359216</isbn><abstract>Optically measured in-line defect data is used for critical area analysis based yield prediction. Because this data can be noisy, however, data can be filtered using kill ratios established from in-line defect to bitmap correlation by mask layer on arrayed devices. This paper reports results from increased granularity of the kill ratio analysis: in-line defect classifications are considered and individual kill ratios for each classification are calculated and used for yield modeling. Furthermore, performing automatic signature classification on the bitmaps and signature to defect correlation adds valuable insight into yield loss mechanisms and improves the accuracy of the yield model.</abstract><pub>IEEE</pub><doi>10.1109/ASMC.2000.902563</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1078-8743 |
ispartof | 2000 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop. ASMC 2000 (Cat. No.00CH37072), 2000, p.83-88 |
issn | 1078-8743 2376-6697 |
language | eng |
recordid | cdi_ieee_primary_902563 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Area measurement Data analysis Failure analysis Information analysis Optical detectors Optical filters Optical losses Optical noise Semiconductor device noise |
title | Critical area based yield prediction using in-line defect classification information [DRAMs] |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A53%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Critical%20area%20based%20yield%20prediction%20using%20in-line%20defect%20classification%20information%20%5BDRAMs%5D&rft.btitle=2000%20IEEE/SEMI%20Advanced%20Semiconductor%20Manufacturing%20Conference%20and%20Workshop.%20ASMC%202000%20(Cat.%20No.00CH37072)&rft.au=Segal,%20J.&rft.date=2000&rft.spage=83&rft.epage=88&rft.pages=83-88&rft.issn=1078-8743&rft.eissn=2376-6697&rft.isbn=9780780359215&rft.isbn_list=0780359216&rft_id=info:doi/10.1109/ASMC.2000.902563&rft_dat=%3Cieee_6IE%3E902563%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=902563&rfr_iscdi=true |