MODEA Based on Multi-Population Strategy With Adaptive Weight and Its Application to Electromagnetic Device Optimization
Various intelligent algorithms are applied in optimization design, and the differential evolution (DE) algorithm is widely applied with its excellent convergence speed and convergence precision. This study analyzed the advantages and disadvantages of the existing multi-objective differential evoluti...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.72039-72046 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72046 |
---|---|
container_issue | |
container_start_page | 72039 |
container_title | IEEE access |
container_volume | 8 |
creator | You, Jiaxin Xiong, Fangyuan Li, Bo Zhang, Tengyue Liang, Huimin |
description | Various intelligent algorithms are applied in optimization design, and the differential evolution (DE) algorithm is widely applied with its excellent convergence speed and convergence precision. This study analyzed the advantages and disadvantages of the existing multi-objective differential evolution (MODE) algorithm, and developed a MODE algorithm based on the adaptive weight and the multi-population strategy (MODE/AWMS). The proposed algorithm was verified using test functions. MODE/AWMS exhibited certain advantages compared with several other multi-objective optimization algorithms. Taking a polarized magnetic relay as an example, MODE/AWMS was used to optimize its key parameters by establishing a rapid calculation model of its electromagnetic mechanism. The electromagnetic force (EMF) of the release position was improved, which verified the validity of MODE/AWMS. |
doi_str_mv | 10.1109/ACCESS.2020.2978487 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9025216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9025216</ieee_id><doaj_id>oai_doaj_org_article_9207ebf06a2d4b2fad54b1308e31987b</doaj_id><sourcerecordid>2453703761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-636e5d779c058d1956e1ee1da62375f07fda6e3da64eeb12517099ebbd8fb8603</originalsourceid><addsrcrecordid>eNpNkV1L5DAYhcuyworrL_AmsNedzUfzddkdRx1QRhjFy5A2b8cMnUlNM6L-eqMV2VwkL4fznLxwiuKM4BkhWP-t5_PFej2jmOIZ1VJVSv4ojikRumSciZ__zb-K03Hc4nxUlrg8Ll5uVueLGv2zIzgU9ujm0Cdf3obh0Nvks7BO0SbYvKIHnx5R7eyQ_DOgB_Cbx4Ts3qFlGlE9DL1vJyIFtOihTTHs7GYPybfoHJ59C2iV2Z1_-7T9Lo46249w-vWeFPcXi7v5VXm9ulzO6-uyrbBKpWACuJNSt5grRzQXQACIs4IyyTssuzwCy1cF0BDKicRaQ9M41TVKYHZSLKdcF-zWDNHvbHw1wXrzKYS4MTbmHXswmmIJTYeFpa5qaGcdrxrCsAJGtJJNzvozZQ0xPB1gTGYbDnGf1ze04kxiJgXJLja52hjGMUL3_SvB5qMxMzVmPhozX41l6myiPAB8ExpTnttj7_zXklw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453703761</pqid></control><display><type>article</type><title>MODEA Based on Multi-Population Strategy With Adaptive Weight and Its Application to Electromagnetic Device Optimization</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>You, Jiaxin ; Xiong, Fangyuan ; Li, Bo ; Zhang, Tengyue ; Liang, Huimin</creator><creatorcontrib>You, Jiaxin ; Xiong, Fangyuan ; Li, Bo ; Zhang, Tengyue ; Liang, Huimin</creatorcontrib><description>Various intelligent algorithms are applied in optimization design, and the differential evolution (DE) algorithm is widely applied with its excellent convergence speed and convergence precision. This study analyzed the advantages and disadvantages of the existing multi-objective differential evolution (MODE) algorithm, and developed a MODE algorithm based on the adaptive weight and the multi-population strategy (MODE/AWMS). The proposed algorithm was verified using test functions. MODE/AWMS exhibited certain advantages compared with several other multi-objective optimization algorithms. Taking a polarized magnetic relay as an example, MODE/AWMS was used to optimize its key parameters by establishing a rapid calculation model of its electromagnetic mechanism. The electromagnetic force (EMF) of the release position was improved, which verified the validity of MODE/AWMS.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2978487</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Algorithms ; Convergence ; Design optimization ; electromagnetic device ; Electromagnetic devices ; Electromagnetic forces ; Evolutionary algorithms ; Evolutionary computation ; genetic algorithms ; Linear programming ; Multiple objective analysis ; Optimization ; optimization method ; Pareto optimization ; Sociology ; Weight</subject><ispartof>IEEE access, 2020, Vol.8, p.72039-72046</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-636e5d779c058d1956e1ee1da62375f07fda6e3da64eeb12517099ebbd8fb8603</citedby><cites>FETCH-LOGICAL-c408t-636e5d779c058d1956e1ee1da62375f07fda6e3da64eeb12517099ebbd8fb8603</cites><orcidid>0000-0002-9945-6280 ; 0000-0003-4158-5677 ; 0000-0002-7848-790X ; 0000-0002-4055-3326 ; 0000-0001-5138-8023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9025216$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>You, Jiaxin</creatorcontrib><creatorcontrib>Xiong, Fangyuan</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Zhang, Tengyue</creatorcontrib><creatorcontrib>Liang, Huimin</creatorcontrib><title>MODEA Based on Multi-Population Strategy With Adaptive Weight and Its Application to Electromagnetic Device Optimization</title><title>IEEE access</title><addtitle>Access</addtitle><description>Various intelligent algorithms are applied in optimization design, and the differential evolution (DE) algorithm is widely applied with its excellent convergence speed and convergence precision. This study analyzed the advantages and disadvantages of the existing multi-objective differential evolution (MODE) algorithm, and developed a MODE algorithm based on the adaptive weight and the multi-population strategy (MODE/AWMS). The proposed algorithm was verified using test functions. MODE/AWMS exhibited certain advantages compared with several other multi-objective optimization algorithms. Taking a polarized magnetic relay as an example, MODE/AWMS was used to optimize its key parameters by establishing a rapid calculation model of its electromagnetic mechanism. The electromagnetic force (EMF) of the release position was improved, which verified the validity of MODE/AWMS.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Convergence</subject><subject>Design optimization</subject><subject>electromagnetic device</subject><subject>Electromagnetic devices</subject><subject>Electromagnetic forces</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>genetic algorithms</subject><subject>Linear programming</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>optimization method</subject><subject>Pareto optimization</subject><subject>Sociology</subject><subject>Weight</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV1L5DAYhcuyworrL_AmsNedzUfzddkdRx1QRhjFy5A2b8cMnUlNM6L-eqMV2VwkL4fznLxwiuKM4BkhWP-t5_PFej2jmOIZ1VJVSv4ojikRumSciZ__zb-K03Hc4nxUlrg8Ll5uVueLGv2zIzgU9ujm0Cdf3obh0Nvks7BO0SbYvKIHnx5R7eyQ_DOgB_Cbx4Ts3qFlGlE9DL1vJyIFtOihTTHs7GYPybfoHJ59C2iV2Z1_-7T9Lo46249w-vWeFPcXi7v5VXm9ulzO6-uyrbBKpWACuJNSt5grRzQXQACIs4IyyTssuzwCy1cF0BDKicRaQ9M41TVKYHZSLKdcF-zWDNHvbHw1wXrzKYS4MTbmHXswmmIJTYeFpa5qaGcdrxrCsAJGtJJNzvozZQ0xPB1gTGYbDnGf1ze04kxiJgXJLja52hjGMUL3_SvB5qMxMzVmPhozX41l6myiPAB8ExpTnttj7_zXklw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>You, Jiaxin</creator><creator>Xiong, Fangyuan</creator><creator>Li, Bo</creator><creator>Zhang, Tengyue</creator><creator>Liang, Huimin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9945-6280</orcidid><orcidid>https://orcid.org/0000-0003-4158-5677</orcidid><orcidid>https://orcid.org/0000-0002-7848-790X</orcidid><orcidid>https://orcid.org/0000-0002-4055-3326</orcidid><orcidid>https://orcid.org/0000-0001-5138-8023</orcidid></search><sort><creationdate>2020</creationdate><title>MODEA Based on Multi-Population Strategy With Adaptive Weight and Its Application to Electromagnetic Device Optimization</title><author>You, Jiaxin ; Xiong, Fangyuan ; Li, Bo ; Zhang, Tengyue ; Liang, Huimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-636e5d779c058d1956e1ee1da62375f07fda6e3da64eeb12517099ebbd8fb8603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Convergence</topic><topic>Design optimization</topic><topic>electromagnetic device</topic><topic>Electromagnetic devices</topic><topic>Electromagnetic forces</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>genetic algorithms</topic><topic>Linear programming</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>optimization method</topic><topic>Pareto optimization</topic><topic>Sociology</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Jiaxin</creatorcontrib><creatorcontrib>Xiong, Fangyuan</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Zhang, Tengyue</creatorcontrib><creatorcontrib>Liang, Huimin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Jiaxin</au><au>Xiong, Fangyuan</au><au>Li, Bo</au><au>Zhang, Tengyue</au><au>Liang, Huimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODEA Based on Multi-Population Strategy With Adaptive Weight and Its Application to Electromagnetic Device Optimization</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>72039</spage><epage>72046</epage><pages>72039-72046</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Various intelligent algorithms are applied in optimization design, and the differential evolution (DE) algorithm is widely applied with its excellent convergence speed and convergence precision. This study analyzed the advantages and disadvantages of the existing multi-objective differential evolution (MODE) algorithm, and developed a MODE algorithm based on the adaptive weight and the multi-population strategy (MODE/AWMS). The proposed algorithm was verified using test functions. MODE/AWMS exhibited certain advantages compared with several other multi-objective optimization algorithms. Taking a polarized magnetic relay as an example, MODE/AWMS was used to optimize its key parameters by establishing a rapid calculation model of its electromagnetic mechanism. The electromagnetic force (EMF) of the release position was improved, which verified the validity of MODE/AWMS.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2978487</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9945-6280</orcidid><orcidid>https://orcid.org/0000-0003-4158-5677</orcidid><orcidid>https://orcid.org/0000-0002-7848-790X</orcidid><orcidid>https://orcid.org/0000-0002-4055-3326</orcidid><orcidid>https://orcid.org/0000-0001-5138-8023</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.72039-72046 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9025216 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptive algorithms Algorithms Convergence Design optimization electromagnetic device Electromagnetic devices Electromagnetic forces Evolutionary algorithms Evolutionary computation genetic algorithms Linear programming Multiple objective analysis Optimization optimization method Pareto optimization Sociology Weight |
title | MODEA Based on Multi-Population Strategy With Adaptive Weight and Its Application to Electromagnetic Device Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODEA%20Based%20on%20Multi-Population%20Strategy%20With%20Adaptive%20Weight%20and%20Its%20Application%20to%20Electromagnetic%20Device%20Optimization&rft.jtitle=IEEE%20access&rft.au=You,%20Jiaxin&rft.date=2020&rft.volume=8&rft.spage=72039&rft.epage=72046&rft.pages=72039-72046&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2978487&rft_dat=%3Cproquest_ieee_%3E2453703761%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453703761&rft_id=info:pmid/&rft_ieee_id=9025216&rft_doaj_id=oai_doaj_org_article_9207ebf06a2d4b2fad54b1308e31987b&rfr_iscdi=true |