MODEA Based on Multi-Population Strategy With Adaptive Weight and Its Application to Electromagnetic Device Optimization

Various intelligent algorithms are applied in optimization design, and the differential evolution (DE) algorithm is widely applied with its excellent convergence speed and convergence precision. This study analyzed the advantages and disadvantages of the existing multi-objective differential evoluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.72039-72046
Hauptverfasser: You, Jiaxin, Xiong, Fangyuan, Li, Bo, Zhang, Tengyue, Liang, Huimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72046
container_issue
container_start_page 72039
container_title IEEE access
container_volume 8
creator You, Jiaxin
Xiong, Fangyuan
Li, Bo
Zhang, Tengyue
Liang, Huimin
description Various intelligent algorithms are applied in optimization design, and the differential evolution (DE) algorithm is widely applied with its excellent convergence speed and convergence precision. This study analyzed the advantages and disadvantages of the existing multi-objective differential evolution (MODE) algorithm, and developed a MODE algorithm based on the adaptive weight and the multi-population strategy (MODE/AWMS). The proposed algorithm was verified using test functions. MODE/AWMS exhibited certain advantages compared with several other multi-objective optimization algorithms. Taking a polarized magnetic relay as an example, MODE/AWMS was used to optimize its key parameters by establishing a rapid calculation model of its electromagnetic mechanism. The electromagnetic force (EMF) of the release position was improved, which verified the validity of MODE/AWMS.
doi_str_mv 10.1109/ACCESS.2020.2978487
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9025216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9025216</ieee_id><doaj_id>oai_doaj_org_article_9207ebf06a2d4b2fad54b1308e31987b</doaj_id><sourcerecordid>2453703761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-636e5d779c058d1956e1ee1da62375f07fda6e3da64eeb12517099ebbd8fb8603</originalsourceid><addsrcrecordid>eNpNkV1L5DAYhcuyworrL_AmsNedzUfzddkdRx1QRhjFy5A2b8cMnUlNM6L-eqMV2VwkL4fznLxwiuKM4BkhWP-t5_PFej2jmOIZ1VJVSv4ojikRumSciZ__zb-K03Hc4nxUlrg8Ll5uVueLGv2zIzgU9ujm0Cdf3obh0Nvks7BO0SbYvKIHnx5R7eyQ_DOgB_Cbx4Ts3qFlGlE9DL1vJyIFtOihTTHs7GYPybfoHJ59C2iV2Z1_-7T9Lo46249w-vWeFPcXi7v5VXm9ulzO6-uyrbBKpWACuJNSt5grRzQXQACIs4IyyTssuzwCy1cF0BDKicRaQ9M41TVKYHZSLKdcF-zWDNHvbHw1wXrzKYS4MTbmHXswmmIJTYeFpa5qaGcdrxrCsAJGtJJNzvozZQ0xPB1gTGYbDnGf1ze04kxiJgXJLja52hjGMUL3_SvB5qMxMzVmPhozX41l6myiPAB8ExpTnttj7_zXklw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453703761</pqid></control><display><type>article</type><title>MODEA Based on Multi-Population Strategy With Adaptive Weight and Its Application to Electromagnetic Device Optimization</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>You, Jiaxin ; Xiong, Fangyuan ; Li, Bo ; Zhang, Tengyue ; Liang, Huimin</creator><creatorcontrib>You, Jiaxin ; Xiong, Fangyuan ; Li, Bo ; Zhang, Tengyue ; Liang, Huimin</creatorcontrib><description>Various intelligent algorithms are applied in optimization design, and the differential evolution (DE) algorithm is widely applied with its excellent convergence speed and convergence precision. This study analyzed the advantages and disadvantages of the existing multi-objective differential evolution (MODE) algorithm, and developed a MODE algorithm based on the adaptive weight and the multi-population strategy (MODE/AWMS). The proposed algorithm was verified using test functions. MODE/AWMS exhibited certain advantages compared with several other multi-objective optimization algorithms. Taking a polarized magnetic relay as an example, MODE/AWMS was used to optimize its key parameters by establishing a rapid calculation model of its electromagnetic mechanism. The electromagnetic force (EMF) of the release position was improved, which verified the validity of MODE/AWMS.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2978487</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Algorithms ; Convergence ; Design optimization ; electromagnetic device ; Electromagnetic devices ; Electromagnetic forces ; Evolutionary algorithms ; Evolutionary computation ; genetic algorithms ; Linear programming ; Multiple objective analysis ; Optimization ; optimization method ; Pareto optimization ; Sociology ; Weight</subject><ispartof>IEEE access, 2020, Vol.8, p.72039-72046</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-636e5d779c058d1956e1ee1da62375f07fda6e3da64eeb12517099ebbd8fb8603</citedby><cites>FETCH-LOGICAL-c408t-636e5d779c058d1956e1ee1da62375f07fda6e3da64eeb12517099ebbd8fb8603</cites><orcidid>0000-0002-9945-6280 ; 0000-0003-4158-5677 ; 0000-0002-7848-790X ; 0000-0002-4055-3326 ; 0000-0001-5138-8023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9025216$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>You, Jiaxin</creatorcontrib><creatorcontrib>Xiong, Fangyuan</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Zhang, Tengyue</creatorcontrib><creatorcontrib>Liang, Huimin</creatorcontrib><title>MODEA Based on Multi-Population Strategy With Adaptive Weight and Its Application to Electromagnetic Device Optimization</title><title>IEEE access</title><addtitle>Access</addtitle><description>Various intelligent algorithms are applied in optimization design, and the differential evolution (DE) algorithm is widely applied with its excellent convergence speed and convergence precision. This study analyzed the advantages and disadvantages of the existing multi-objective differential evolution (MODE) algorithm, and developed a MODE algorithm based on the adaptive weight and the multi-population strategy (MODE/AWMS). The proposed algorithm was verified using test functions. MODE/AWMS exhibited certain advantages compared with several other multi-objective optimization algorithms. Taking a polarized magnetic relay as an example, MODE/AWMS was used to optimize its key parameters by establishing a rapid calculation model of its electromagnetic mechanism. The electromagnetic force (EMF) of the release position was improved, which verified the validity of MODE/AWMS.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Convergence</subject><subject>Design optimization</subject><subject>electromagnetic device</subject><subject>Electromagnetic devices</subject><subject>Electromagnetic forces</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>genetic algorithms</subject><subject>Linear programming</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>optimization method</subject><subject>Pareto optimization</subject><subject>Sociology</subject><subject>Weight</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV1L5DAYhcuyworrL_AmsNedzUfzddkdRx1QRhjFy5A2b8cMnUlNM6L-eqMV2VwkL4fznLxwiuKM4BkhWP-t5_PFej2jmOIZ1VJVSv4ojikRumSciZ__zb-K03Hc4nxUlrg8Ll5uVueLGv2zIzgU9ujm0Cdf3obh0Nvks7BO0SbYvKIHnx5R7eyQ_DOgB_Cbx4Ts3qFlGlE9DL1vJyIFtOihTTHs7GYPybfoHJ59C2iV2Z1_-7T9Lo46249w-vWeFPcXi7v5VXm9ulzO6-uyrbBKpWACuJNSt5grRzQXQACIs4IyyTssuzwCy1cF0BDKicRaQ9M41TVKYHZSLKdcF-zWDNHvbHw1wXrzKYS4MTbmHXswmmIJTYeFpa5qaGcdrxrCsAJGtJJNzvozZQ0xPB1gTGYbDnGf1ze04kxiJgXJLja52hjGMUL3_SvB5qMxMzVmPhozX41l6myiPAB8ExpTnttj7_zXklw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>You, Jiaxin</creator><creator>Xiong, Fangyuan</creator><creator>Li, Bo</creator><creator>Zhang, Tengyue</creator><creator>Liang, Huimin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9945-6280</orcidid><orcidid>https://orcid.org/0000-0003-4158-5677</orcidid><orcidid>https://orcid.org/0000-0002-7848-790X</orcidid><orcidid>https://orcid.org/0000-0002-4055-3326</orcidid><orcidid>https://orcid.org/0000-0001-5138-8023</orcidid></search><sort><creationdate>2020</creationdate><title>MODEA Based on Multi-Population Strategy With Adaptive Weight and Its Application to Electromagnetic Device Optimization</title><author>You, Jiaxin ; Xiong, Fangyuan ; Li, Bo ; Zhang, Tengyue ; Liang, Huimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-636e5d779c058d1956e1ee1da62375f07fda6e3da64eeb12517099ebbd8fb8603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Convergence</topic><topic>Design optimization</topic><topic>electromagnetic device</topic><topic>Electromagnetic devices</topic><topic>Electromagnetic forces</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>genetic algorithms</topic><topic>Linear programming</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>optimization method</topic><topic>Pareto optimization</topic><topic>Sociology</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Jiaxin</creatorcontrib><creatorcontrib>Xiong, Fangyuan</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Zhang, Tengyue</creatorcontrib><creatorcontrib>Liang, Huimin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Jiaxin</au><au>Xiong, Fangyuan</au><au>Li, Bo</au><au>Zhang, Tengyue</au><au>Liang, Huimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODEA Based on Multi-Population Strategy With Adaptive Weight and Its Application to Electromagnetic Device Optimization</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>72039</spage><epage>72046</epage><pages>72039-72046</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Various intelligent algorithms are applied in optimization design, and the differential evolution (DE) algorithm is widely applied with its excellent convergence speed and convergence precision. This study analyzed the advantages and disadvantages of the existing multi-objective differential evolution (MODE) algorithm, and developed a MODE algorithm based on the adaptive weight and the multi-population strategy (MODE/AWMS). The proposed algorithm was verified using test functions. MODE/AWMS exhibited certain advantages compared with several other multi-objective optimization algorithms. Taking a polarized magnetic relay as an example, MODE/AWMS was used to optimize its key parameters by establishing a rapid calculation model of its electromagnetic mechanism. The electromagnetic force (EMF) of the release position was improved, which verified the validity of MODE/AWMS.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2978487</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9945-6280</orcidid><orcidid>https://orcid.org/0000-0003-4158-5677</orcidid><orcidid>https://orcid.org/0000-0002-7848-790X</orcidid><orcidid>https://orcid.org/0000-0002-4055-3326</orcidid><orcidid>https://orcid.org/0000-0001-5138-8023</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.72039-72046
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9025216
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptive algorithms
Algorithms
Convergence
Design optimization
electromagnetic device
Electromagnetic devices
Electromagnetic forces
Evolutionary algorithms
Evolutionary computation
genetic algorithms
Linear programming
Multiple objective analysis
Optimization
optimization method
Pareto optimization
Sociology
Weight
title MODEA Based on Multi-Population Strategy With Adaptive Weight and Its Application to Electromagnetic Device Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODEA%20Based%20on%20Multi-Population%20Strategy%20With%20Adaptive%20Weight%20and%20Its%20Application%20to%20Electromagnetic%20Device%20Optimization&rft.jtitle=IEEE%20access&rft.au=You,%20Jiaxin&rft.date=2020&rft.volume=8&rft.spage=72039&rft.epage=72046&rft.pages=72039-72046&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2978487&rft_dat=%3Cproquest_ieee_%3E2453703761%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453703761&rft_id=info:pmid/&rft_ieee_id=9025216&rft_doaj_id=oai_doaj_org_article_9207ebf06a2d4b2fad54b1308e31987b&rfr_iscdi=true