A Reinforcement Learning-Based User-Assisted Caching Strategy for Dynamic Content Library in Small Cell Networks

This paper studies the problem of joint edge cache placement and content delivery in cache-enabled small cell networks in the presence of spatio-temporal content dynamics unknown a priori . The small base stations (SBSs) satisfy users' content requests either directly from their local caches, o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2020-06, Vol.68 (6), p.3627-3639
Hauptverfasser: Zhang, Xinruo, Zheng, Gan, Lambotharan, Sangarapillai, Nakhai, Mohammad Reza, Wong, Kai-Kit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3639
container_issue 6
container_start_page 3627
container_title IEEE transactions on communications
container_volume 68
creator Zhang, Xinruo
Zheng, Gan
Lambotharan, Sangarapillai
Nakhai, Mohammad Reza
Wong, Kai-Kit
description This paper studies the problem of joint edge cache placement and content delivery in cache-enabled small cell networks in the presence of spatio-temporal content dynamics unknown a priori . The small base stations (SBSs) satisfy users' content requests either directly from their local caches, or by retrieving from other SBSs' caches or from the content server. In contrast to previous approaches that assume a static content library at the server, this paper considers a more realistic non-stationary content library, where new contents may emerge over time at different locations. To keep track of spatio-temporal content dynamics, we propose that the new contents cached at users can be exploited by the SBSs to timely update their flexible cache memories in addition to their routine off-peak main cache updates from the content server. To take into account the variations in traffic demands as well as the limited caching space at the SBSs, a user-assisted caching strategy is proposed based on reinforcement learning principles to progressively optimize the caching policy with the target of maximizing the weighted network utility in the long run. Simulation results verify the superior performance of the proposed caching strategy against various benchmark designs.
doi_str_mv 10.1109/TCOMM.2020.2977895
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9020168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9020168</ieee_id><sourcerecordid>2414535603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-568adebfcc3641d991bd7ef593079fc263d8f538298b8ac722474fe12ecea9913</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFjzixlyU8pZZKtF1HjjMpLq1T7FSof4_7EJsZje69M6OD0C0lA0qJepgVk_F4wAgjA6byXCpxhnpUCJkQKfJz1CNEkSSLyiW6CmFJCEkJ5z20GeJPsK5pvYE1uA6PQHtn3SJ51AFqPA_gk2EINnRxKrT5ihqedl53sNjhmMNPO6fX1uCidd1hg6289jtsHZ6u9WqFC4jlA7rf1n-Ha3TR6FWAm1Pvo_nL86x4S0aT1_diOEoM56pLRCZ1DVVjDM9SWitFqzqHRihOctUYlvFaNoJLpmQltckZS_O0AcrAgI5u3kf3x70b3_5sIXTlst16F0-WLKWp4CKLAPqIHV3GtyF4aMqNt-v4fUlJuSdbHsiWe7LliWwM3R1DFgD-AypaaCb5Hwl2dZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414535603</pqid></control><display><type>article</type><title>A Reinforcement Learning-Based User-Assisted Caching Strategy for Dynamic Content Library in Small Cell Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xinruo ; Zheng, Gan ; Lambotharan, Sangarapillai ; Nakhai, Mohammad Reza ; Wong, Kai-Kit</creator><creatorcontrib>Zhang, Xinruo ; Zheng, Gan ; Lambotharan, Sangarapillai ; Nakhai, Mohammad Reza ; Wong, Kai-Kit</creatorcontrib><description>This paper studies the problem of joint edge cache placement and content delivery in cache-enabled small cell networks in the presence of spatio-temporal content dynamics unknown a priori . The small base stations (SBSs) satisfy users' content requests either directly from their local caches, or by retrieving from other SBSs' caches or from the content server. In contrast to previous approaches that assume a static content library at the server, this paper considers a more realistic non-stationary content library, where new contents may emerge over time at different locations. To keep track of spatio-temporal content dynamics, we propose that the new contents cached at users can be exploited by the SBSs to timely update their flexible cache memories in addition to their routine off-peak main cache updates from the content server. To take into account the variations in traffic demands as well as the limited caching space at the SBSs, a user-assisted caching strategy is proposed based on reinforcement learning principles to progressively optimize the caching policy with the target of maximizing the weighted network utility in the long run. Simulation results verify the superior performance of the proposed caching strategy against various benchmark designs.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2020.2977895</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>cache placement ; Caching ; content delivery ; dynamic content library ; Gallium nitride ; Heuristic algorithms ; Indexes ; Learning ; Libraries ; Microcell networks ; Non-stationary bandit ; Optimization ; Servers ; Strategy ; time-varying popularity ; Upgrading ; User satisfaction</subject><ispartof>IEEE transactions on communications, 2020-06, Vol.68 (6), p.3627-3639</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-568adebfcc3641d991bd7ef593079fc263d8f538298b8ac722474fe12ecea9913</citedby><cites>FETCH-LOGICAL-c339t-568adebfcc3641d991bd7ef593079fc263d8f538298b8ac722474fe12ecea9913</cites><orcidid>0000-0001-8457-6477 ; 0000-0001-5255-7036 ; 0000-0001-7521-0078 ; 0000-0001-6718-8448 ; 0000-0002-1623-1749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9020168$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9020168$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xinruo</creatorcontrib><creatorcontrib>Zheng, Gan</creatorcontrib><creatorcontrib>Lambotharan, Sangarapillai</creatorcontrib><creatorcontrib>Nakhai, Mohammad Reza</creatorcontrib><creatorcontrib>Wong, Kai-Kit</creatorcontrib><title>A Reinforcement Learning-Based User-Assisted Caching Strategy for Dynamic Content Library in Small Cell Networks</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>This paper studies the problem of joint edge cache placement and content delivery in cache-enabled small cell networks in the presence of spatio-temporal content dynamics unknown a priori . The small base stations (SBSs) satisfy users' content requests either directly from their local caches, or by retrieving from other SBSs' caches or from the content server. In contrast to previous approaches that assume a static content library at the server, this paper considers a more realistic non-stationary content library, where new contents may emerge over time at different locations. To keep track of spatio-temporal content dynamics, we propose that the new contents cached at users can be exploited by the SBSs to timely update their flexible cache memories in addition to their routine off-peak main cache updates from the content server. To take into account the variations in traffic demands as well as the limited caching space at the SBSs, a user-assisted caching strategy is proposed based on reinforcement learning principles to progressively optimize the caching policy with the target of maximizing the weighted network utility in the long run. Simulation results verify the superior performance of the proposed caching strategy against various benchmark designs.</description><subject>cache placement</subject><subject>Caching</subject><subject>content delivery</subject><subject>dynamic content library</subject><subject>Gallium nitride</subject><subject>Heuristic algorithms</subject><subject>Indexes</subject><subject>Learning</subject><subject>Libraries</subject><subject>Microcell networks</subject><subject>Non-stationary bandit</subject><subject>Optimization</subject><subject>Servers</subject><subject>Strategy</subject><subject>time-varying popularity</subject><subject>Upgrading</subject><subject>User satisfaction</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFjzixlyU8pZZKtF1HjjMpLq1T7FSof4_7EJsZje69M6OD0C0lA0qJepgVk_F4wAgjA6byXCpxhnpUCJkQKfJz1CNEkSSLyiW6CmFJCEkJ5z20GeJPsK5pvYE1uA6PQHtn3SJ51AFqPA_gk2EINnRxKrT5ihqedl53sNjhmMNPO6fX1uCidd1hg6289jtsHZ6u9WqFC4jlA7rf1n-Ha3TR6FWAm1Pvo_nL86x4S0aT1_diOEoM56pLRCZ1DVVjDM9SWitFqzqHRihOctUYlvFaNoJLpmQltckZS_O0AcrAgI5u3kf3x70b3_5sIXTlst16F0-WLKWp4CKLAPqIHV3GtyF4aMqNt-v4fUlJuSdbHsiWe7LliWwM3R1DFgD-AypaaCb5Hwl2dZc</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Zhang, Xinruo</creator><creator>Zheng, Gan</creator><creator>Lambotharan, Sangarapillai</creator><creator>Nakhai, Mohammad Reza</creator><creator>Wong, Kai-Kit</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8457-6477</orcidid><orcidid>https://orcid.org/0000-0001-5255-7036</orcidid><orcidid>https://orcid.org/0000-0001-7521-0078</orcidid><orcidid>https://orcid.org/0000-0001-6718-8448</orcidid><orcidid>https://orcid.org/0000-0002-1623-1749</orcidid></search><sort><creationdate>20200601</creationdate><title>A Reinforcement Learning-Based User-Assisted Caching Strategy for Dynamic Content Library in Small Cell Networks</title><author>Zhang, Xinruo ; Zheng, Gan ; Lambotharan, Sangarapillai ; Nakhai, Mohammad Reza ; Wong, Kai-Kit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-568adebfcc3641d991bd7ef593079fc263d8f538298b8ac722474fe12ecea9913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cache placement</topic><topic>Caching</topic><topic>content delivery</topic><topic>dynamic content library</topic><topic>Gallium nitride</topic><topic>Heuristic algorithms</topic><topic>Indexes</topic><topic>Learning</topic><topic>Libraries</topic><topic>Microcell networks</topic><topic>Non-stationary bandit</topic><topic>Optimization</topic><topic>Servers</topic><topic>Strategy</topic><topic>time-varying popularity</topic><topic>Upgrading</topic><topic>User satisfaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinruo</creatorcontrib><creatorcontrib>Zheng, Gan</creatorcontrib><creatorcontrib>Lambotharan, Sangarapillai</creatorcontrib><creatorcontrib>Nakhai, Mohammad Reza</creatorcontrib><creatorcontrib>Wong, Kai-Kit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xinruo</au><au>Zheng, Gan</au><au>Lambotharan, Sangarapillai</au><au>Nakhai, Mohammad Reza</au><au>Wong, Kai-Kit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Reinforcement Learning-Based User-Assisted Caching Strategy for Dynamic Content Library in Small Cell Networks</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>68</volume><issue>6</issue><spage>3627</spage><epage>3639</epage><pages>3627-3639</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>This paper studies the problem of joint edge cache placement and content delivery in cache-enabled small cell networks in the presence of spatio-temporal content dynamics unknown a priori . The small base stations (SBSs) satisfy users' content requests either directly from their local caches, or by retrieving from other SBSs' caches or from the content server. In contrast to previous approaches that assume a static content library at the server, this paper considers a more realistic non-stationary content library, where new contents may emerge over time at different locations. To keep track of spatio-temporal content dynamics, we propose that the new contents cached at users can be exploited by the SBSs to timely update their flexible cache memories in addition to their routine off-peak main cache updates from the content server. To take into account the variations in traffic demands as well as the limited caching space at the SBSs, a user-assisted caching strategy is proposed based on reinforcement learning principles to progressively optimize the caching policy with the target of maximizing the weighted network utility in the long run. Simulation results verify the superior performance of the proposed caching strategy against various benchmark designs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2020.2977895</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8457-6477</orcidid><orcidid>https://orcid.org/0000-0001-5255-7036</orcidid><orcidid>https://orcid.org/0000-0001-7521-0078</orcidid><orcidid>https://orcid.org/0000-0001-6718-8448</orcidid><orcidid>https://orcid.org/0000-0002-1623-1749</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2020-06, Vol.68 (6), p.3627-3639
issn 0090-6778
1558-0857
language eng
recordid cdi_ieee_primary_9020168
source IEEE Electronic Library (IEL)
subjects cache placement
Caching
content delivery
dynamic content library
Gallium nitride
Heuristic algorithms
Indexes
Learning
Libraries
Microcell networks
Non-stationary bandit
Optimization
Servers
Strategy
time-varying popularity
Upgrading
User satisfaction
title A Reinforcement Learning-Based User-Assisted Caching Strategy for Dynamic Content Library in Small Cell Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Reinforcement%20Learning-Based%20User-Assisted%20Caching%20Strategy%20for%20Dynamic%20Content%20Library%20in%20Small%20Cell%20Networks&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Zhang,%20Xinruo&rft.date=2020-06-01&rft.volume=68&rft.issue=6&rft.spage=3627&rft.epage=3639&rft.pages=3627-3639&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2020.2977895&rft_dat=%3Cproquest_RIE%3E2414535603%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414535603&rft_id=info:pmid/&rft_ieee_id=9020168&rfr_iscdi=true