Deep Autoencoder for Mass Spectrometry Feature Learning and Cancer Detection
Cancer is still one of the most life threatening disease and by far it is still difficult to prevent, prone to recurrence and metastasis and high in mortality. Lots of studies indicate that early cancer diagnosis can effectively increase the survival rate of patients. But early stage cancer is diffi...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Zhou, Qingguo Yong, Binbin Lv, Qingquan Shen, Jun Wang, Xin |
description | Cancer is still one of the most life threatening disease and by far it is still difficult to prevent, prone to recurrence and metastasis and high in mortality. Lots of studies indicate that early cancer diagnosis can effectively increase the survival rate of patients. But early stage cancer is difficult to be detected because of its inconspicuous features. Hence, convenient and effective cancer detection methods are urgently needed. In this paper, we propose to utilize deep autoencoder to learn latent representation of high-dimensional mass spectrometry data. Meanwhile, as a contrast, traditional particle swarm optimization (PSO) optimization algorithm are also used to select optimized features from mass spectrometry data. The learned features are further evaluated on three cancer datasets. The experimental results demonstrate that the cancer detection accuracy by learned features is as high as 100%. As our main contribution, the deep autoencoder method used in this study is a feasible and powerful instrument for mass spectrometry feature learning and also cancer diagnosis. |
doi_str_mv | 10.1109/ACCESS.2020.2977680 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9020066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9020066</ieee_id><doaj_id>oai_doaj_org_article_cb674a97fb514b9a84edd19f9833d6f1</doaj_id><sourcerecordid>2454725027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-5423e9d51fd666c62903142d53153509132feff61753ec1e19dc18938e76f123</originalsourceid><addsrcrecordid>eNpNkc1uwjAQhKOqlYooT8AlUs-h_ont-IgCtEipeoC7Zew1CoI4dZIDb1_ToKp72dVq5tuVJknmGC0wRvJtWZbr3W5BEEELIoXgBXpIJgRzmVFG-eO_-TmZdd0JxSriiolJUq0A2nQ59B4a4y2E1PmQfuquS3ctmD74C_Thmm5A90OAtAIdmro5prqxaakbEx0r6KOy9s1L8uT0uYPZvU-T_Wa9Lz-y6ut9Wy6rzOSo6DOWEwrSMuws59xwIhHFObGMYkYZkpgSB85xLBgFgwFLa3AhaQGCO0zoNNmOWOv1SbWhvuhwVV7X6nfhw1Hp0NfmDMocuMi1FO7AcH6QusjBWiydLCi1ERZZryOrDf57gK5XJz-EJn6vSM5yQRgiIqroqDLBd10A93cVI3ULQY0hqFsI6h5CdM1HVw0Afw4ZJYhz-gMr3IDf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454725027</pqid></control><display><type>article</type><title>Deep Autoencoder for Mass Spectrometry Feature Learning and Cancer Detection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhou, Qingguo ; Yong, Binbin ; Lv, Qingquan ; Shen, Jun ; Wang, Xin</creator><creatorcontrib>Zhou, Qingguo ; Yong, Binbin ; Lv, Qingquan ; Shen, Jun ; Wang, Xin</creatorcontrib><description>Cancer is still one of the most life threatening disease and by far it is still difficult to prevent, prone to recurrence and metastasis and high in mortality. Lots of studies indicate that early cancer diagnosis can effectively increase the survival rate of patients. But early stage cancer is difficult to be detected because of its inconspicuous features. Hence, convenient and effective cancer detection methods are urgently needed. In this paper, we propose to utilize deep autoencoder to learn latent representation of high-dimensional mass spectrometry data. Meanwhile, as a contrast, traditional particle swarm optimization (PSO) optimization algorithm are also used to select optimized features from mass spectrometry data. The learned features are further evaluated on three cancer datasets. The experimental results demonstrate that the cancer detection accuracy by learned features is as high as 100%. As our main contribution, the deep autoencoder method used in this study is a feasible and powerful instrument for mass spectrometry feature learning and also cancer diagnosis.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2977680</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cancer ; Cancer detection ; deep autoencoder ; Diagnosis ; Early cancer diagnosis ; Feature extraction ; Machine learning ; Mass spectrometry ; mass spectrometry feature learning ; Mass spectroscopy ; Medical diagnosis ; Particle swarm optimization ; Proteomics ; Scientific imaging ; Spectroscopy ; Tumors</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-5423e9d51fd666c62903142d53153509132feff61753ec1e19dc18938e76f123</citedby><cites>FETCH-LOGICAL-c408t-5423e9d51fd666c62903142d53153509132feff61753ec1e19dc18938e76f123</cites><orcidid>0000-0001-8054-5446 ; 0000-0002-6460-8950 ; 0000-0002-9403-7140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9020066$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Zhou, Qingguo</creatorcontrib><creatorcontrib>Yong, Binbin</creatorcontrib><creatorcontrib>Lv, Qingquan</creatorcontrib><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><title>Deep Autoencoder for Mass Spectrometry Feature Learning and Cancer Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cancer is still one of the most life threatening disease and by far it is still difficult to prevent, prone to recurrence and metastasis and high in mortality. Lots of studies indicate that early cancer diagnosis can effectively increase the survival rate of patients. But early stage cancer is difficult to be detected because of its inconspicuous features. Hence, convenient and effective cancer detection methods are urgently needed. In this paper, we propose to utilize deep autoencoder to learn latent representation of high-dimensional mass spectrometry data. Meanwhile, as a contrast, traditional particle swarm optimization (PSO) optimization algorithm are also used to select optimized features from mass spectrometry data. The learned features are further evaluated on three cancer datasets. The experimental results demonstrate that the cancer detection accuracy by learned features is as high as 100%. As our main contribution, the deep autoencoder method used in this study is a feasible and powerful instrument for mass spectrometry feature learning and also cancer diagnosis.</description><subject>Algorithms</subject><subject>Cancer</subject><subject>Cancer detection</subject><subject>deep autoencoder</subject><subject>Diagnosis</subject><subject>Early cancer diagnosis</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Mass spectrometry</subject><subject>mass spectrometry feature learning</subject><subject>Mass spectroscopy</subject><subject>Medical diagnosis</subject><subject>Particle swarm optimization</subject><subject>Proteomics</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>Tumors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1uwjAQhKOqlYooT8AlUs-h_ont-IgCtEipeoC7Zew1CoI4dZIDb1_ToKp72dVq5tuVJknmGC0wRvJtWZbr3W5BEEELIoXgBXpIJgRzmVFG-eO_-TmZdd0JxSriiolJUq0A2nQ59B4a4y2E1PmQfuquS3ctmD74C_Thmm5A90OAtAIdmro5prqxaakbEx0r6KOy9s1L8uT0uYPZvU-T_Wa9Lz-y6ut9Wy6rzOSo6DOWEwrSMuws59xwIhHFObGMYkYZkpgSB85xLBgFgwFLa3AhaQGCO0zoNNmOWOv1SbWhvuhwVV7X6nfhw1Hp0NfmDMocuMi1FO7AcH6QusjBWiydLCi1ERZZryOrDf57gK5XJz-EJn6vSM5yQRgiIqroqDLBd10A93cVI3ULQY0hqFsI6h5CdM1HVw0Afw4ZJYhz-gMr3IDf</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhou, Qingguo</creator><creator>Yong, Binbin</creator><creator>Lv, Qingquan</creator><creator>Shen, Jun</creator><creator>Wang, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8054-5446</orcidid><orcidid>https://orcid.org/0000-0002-6460-8950</orcidid><orcidid>https://orcid.org/0000-0002-9403-7140</orcidid></search><sort><creationdate>20200101</creationdate><title>Deep Autoencoder for Mass Spectrometry Feature Learning and Cancer Detection</title><author>Zhou, Qingguo ; Yong, Binbin ; Lv, Qingquan ; Shen, Jun ; Wang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-5423e9d51fd666c62903142d53153509132feff61753ec1e19dc18938e76f123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cancer</topic><topic>Cancer detection</topic><topic>deep autoencoder</topic><topic>Diagnosis</topic><topic>Early cancer diagnosis</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Mass spectrometry</topic><topic>mass spectrometry feature learning</topic><topic>Mass spectroscopy</topic><topic>Medical diagnosis</topic><topic>Particle swarm optimization</topic><topic>Proteomics</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Qingguo</creatorcontrib><creatorcontrib>Yong, Binbin</creatorcontrib><creatorcontrib>Lv, Qingquan</creatorcontrib><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Qingguo</au><au>Yong, Binbin</au><au>Lv, Qingquan</au><au>Shen, Jun</au><au>Wang, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Autoencoder for Mass Spectrometry Feature Learning and Cancer Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cancer is still one of the most life threatening disease and by far it is still difficult to prevent, prone to recurrence and metastasis and high in mortality. Lots of studies indicate that early cancer diagnosis can effectively increase the survival rate of patients. But early stage cancer is difficult to be detected because of its inconspicuous features. Hence, convenient and effective cancer detection methods are urgently needed. In this paper, we propose to utilize deep autoencoder to learn latent representation of high-dimensional mass spectrometry data. Meanwhile, as a contrast, traditional particle swarm optimization (PSO) optimization algorithm are also used to select optimized features from mass spectrometry data. The learned features are further evaluated on three cancer datasets. The experimental results demonstrate that the cancer detection accuracy by learned features is as high as 100%. As our main contribution, the deep autoencoder method used in this study is a feasible and powerful instrument for mass spectrometry feature learning and also cancer diagnosis.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2977680</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8054-5446</orcidid><orcidid>https://orcid.org/0000-0002-6460-8950</orcidid><orcidid>https://orcid.org/0000-0002-9403-7140</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9020066 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Cancer Cancer detection deep autoencoder Diagnosis Early cancer diagnosis Feature extraction Machine learning Mass spectrometry mass spectrometry feature learning Mass spectroscopy Medical diagnosis Particle swarm optimization Proteomics Scientific imaging Spectroscopy Tumors |
title | Deep Autoencoder for Mass Spectrometry Feature Learning and Cancer Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Autoencoder%20for%20Mass%20Spectrometry%20Feature%20Learning%20and%20Cancer%20Detection&rft.jtitle=IEEE%20access&rft.au=Zhou,%20Qingguo&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2977680&rft_dat=%3Cproquest_ieee_%3E2454725027%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454725027&rft_id=info:pmid/&rft_ieee_id=9020066&rft_doaj_id=oai_doaj_org_article_cb674a97fb514b9a84edd19f9833d6f1&rfr_iscdi=true |