Deep Autoencoder for Mass Spectrometry Feature Learning and Cancer Detection

Cancer is still one of the most life threatening disease and by far it is still difficult to prevent, prone to recurrence and metastasis and high in mortality. Lots of studies indicate that early cancer diagnosis can effectively increase the survival rate of patients. But early stage cancer is diffi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Zhou, Qingguo, Yong, Binbin, Lv, Qingquan, Shen, Jun, Wang, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Zhou, Qingguo
Yong, Binbin
Lv, Qingquan
Shen, Jun
Wang, Xin
description Cancer is still one of the most life threatening disease and by far it is still difficult to prevent, prone to recurrence and metastasis and high in mortality. Lots of studies indicate that early cancer diagnosis can effectively increase the survival rate of patients. But early stage cancer is difficult to be detected because of its inconspicuous features. Hence, convenient and effective cancer detection methods are urgently needed. In this paper, we propose to utilize deep autoencoder to learn latent representation of high-dimensional mass spectrometry data. Meanwhile, as a contrast, traditional particle swarm optimization (PSO) optimization algorithm are also used to select optimized features from mass spectrometry data. The learned features are further evaluated on three cancer datasets. The experimental results demonstrate that the cancer detection accuracy by learned features is as high as 100%. As our main contribution, the deep autoencoder method used in this study is a feasible and powerful instrument for mass spectrometry feature learning and also cancer diagnosis.
doi_str_mv 10.1109/ACCESS.2020.2977680
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9020066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9020066</ieee_id><doaj_id>oai_doaj_org_article_cb674a97fb514b9a84edd19f9833d6f1</doaj_id><sourcerecordid>2454725027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-5423e9d51fd666c62903142d53153509132feff61753ec1e19dc18938e76f123</originalsourceid><addsrcrecordid>eNpNkc1uwjAQhKOqlYooT8AlUs-h_ont-IgCtEipeoC7Zew1CoI4dZIDb1_ToKp72dVq5tuVJknmGC0wRvJtWZbr3W5BEEELIoXgBXpIJgRzmVFG-eO_-TmZdd0JxSriiolJUq0A2nQ59B4a4y2E1PmQfuquS3ctmD74C_Thmm5A90OAtAIdmro5prqxaakbEx0r6KOy9s1L8uT0uYPZvU-T_Wa9Lz-y6ut9Wy6rzOSo6DOWEwrSMuws59xwIhHFObGMYkYZkpgSB85xLBgFgwFLa3AhaQGCO0zoNNmOWOv1SbWhvuhwVV7X6nfhw1Hp0NfmDMocuMi1FO7AcH6QusjBWiydLCi1ERZZryOrDf57gK5XJz-EJn6vSM5yQRgiIqroqDLBd10A93cVI3ULQY0hqFsI6h5CdM1HVw0Afw4ZJYhz-gMr3IDf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454725027</pqid></control><display><type>article</type><title>Deep Autoencoder for Mass Spectrometry Feature Learning and Cancer Detection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhou, Qingguo ; Yong, Binbin ; Lv, Qingquan ; Shen, Jun ; Wang, Xin</creator><creatorcontrib>Zhou, Qingguo ; Yong, Binbin ; Lv, Qingquan ; Shen, Jun ; Wang, Xin</creatorcontrib><description>Cancer is still one of the most life threatening disease and by far it is still difficult to prevent, prone to recurrence and metastasis and high in mortality. Lots of studies indicate that early cancer diagnosis can effectively increase the survival rate of patients. But early stage cancer is difficult to be detected because of its inconspicuous features. Hence, convenient and effective cancer detection methods are urgently needed. In this paper, we propose to utilize deep autoencoder to learn latent representation of high-dimensional mass spectrometry data. Meanwhile, as a contrast, traditional particle swarm optimization (PSO) optimization algorithm are also used to select optimized features from mass spectrometry data. The learned features are further evaluated on three cancer datasets. The experimental results demonstrate that the cancer detection accuracy by learned features is as high as 100%. As our main contribution, the deep autoencoder method used in this study is a feasible and powerful instrument for mass spectrometry feature learning and also cancer diagnosis.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2977680</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cancer ; Cancer detection ; deep autoencoder ; Diagnosis ; Early cancer diagnosis ; Feature extraction ; Machine learning ; Mass spectrometry ; mass spectrometry feature learning ; Mass spectroscopy ; Medical diagnosis ; Particle swarm optimization ; Proteomics ; Scientific imaging ; Spectroscopy ; Tumors</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-5423e9d51fd666c62903142d53153509132feff61753ec1e19dc18938e76f123</citedby><cites>FETCH-LOGICAL-c408t-5423e9d51fd666c62903142d53153509132feff61753ec1e19dc18938e76f123</cites><orcidid>0000-0001-8054-5446 ; 0000-0002-6460-8950 ; 0000-0002-9403-7140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9020066$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Zhou, Qingguo</creatorcontrib><creatorcontrib>Yong, Binbin</creatorcontrib><creatorcontrib>Lv, Qingquan</creatorcontrib><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><title>Deep Autoencoder for Mass Spectrometry Feature Learning and Cancer Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cancer is still one of the most life threatening disease and by far it is still difficult to prevent, prone to recurrence and metastasis and high in mortality. Lots of studies indicate that early cancer diagnosis can effectively increase the survival rate of patients. But early stage cancer is difficult to be detected because of its inconspicuous features. Hence, convenient and effective cancer detection methods are urgently needed. In this paper, we propose to utilize deep autoencoder to learn latent representation of high-dimensional mass spectrometry data. Meanwhile, as a contrast, traditional particle swarm optimization (PSO) optimization algorithm are also used to select optimized features from mass spectrometry data. The learned features are further evaluated on three cancer datasets. The experimental results demonstrate that the cancer detection accuracy by learned features is as high as 100%. As our main contribution, the deep autoencoder method used in this study is a feasible and powerful instrument for mass spectrometry feature learning and also cancer diagnosis.</description><subject>Algorithms</subject><subject>Cancer</subject><subject>Cancer detection</subject><subject>deep autoencoder</subject><subject>Diagnosis</subject><subject>Early cancer diagnosis</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Mass spectrometry</subject><subject>mass spectrometry feature learning</subject><subject>Mass spectroscopy</subject><subject>Medical diagnosis</subject><subject>Particle swarm optimization</subject><subject>Proteomics</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>Tumors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1uwjAQhKOqlYooT8AlUs-h_ont-IgCtEipeoC7Zew1CoI4dZIDb1_ToKp72dVq5tuVJknmGC0wRvJtWZbr3W5BEEELIoXgBXpIJgRzmVFG-eO_-TmZdd0JxSriiolJUq0A2nQ59B4a4y2E1PmQfuquS3ctmD74C_Thmm5A90OAtAIdmro5prqxaakbEx0r6KOy9s1L8uT0uYPZvU-T_Wa9Lz-y6ut9Wy6rzOSo6DOWEwrSMuws59xwIhHFObGMYkYZkpgSB85xLBgFgwFLa3AhaQGCO0zoNNmOWOv1SbWhvuhwVV7X6nfhw1Hp0NfmDMocuMi1FO7AcH6QusjBWiydLCi1ERZZryOrDf57gK5XJz-EJn6vSM5yQRgiIqroqDLBd10A93cVI3ULQY0hqFsI6h5CdM1HVw0Afw4ZJYhz-gMr3IDf</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhou, Qingguo</creator><creator>Yong, Binbin</creator><creator>Lv, Qingquan</creator><creator>Shen, Jun</creator><creator>Wang, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8054-5446</orcidid><orcidid>https://orcid.org/0000-0002-6460-8950</orcidid><orcidid>https://orcid.org/0000-0002-9403-7140</orcidid></search><sort><creationdate>20200101</creationdate><title>Deep Autoencoder for Mass Spectrometry Feature Learning and Cancer Detection</title><author>Zhou, Qingguo ; Yong, Binbin ; Lv, Qingquan ; Shen, Jun ; Wang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-5423e9d51fd666c62903142d53153509132feff61753ec1e19dc18938e76f123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cancer</topic><topic>Cancer detection</topic><topic>deep autoencoder</topic><topic>Diagnosis</topic><topic>Early cancer diagnosis</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Mass spectrometry</topic><topic>mass spectrometry feature learning</topic><topic>Mass spectroscopy</topic><topic>Medical diagnosis</topic><topic>Particle swarm optimization</topic><topic>Proteomics</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Qingguo</creatorcontrib><creatorcontrib>Yong, Binbin</creatorcontrib><creatorcontrib>Lv, Qingquan</creatorcontrib><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Qingguo</au><au>Yong, Binbin</au><au>Lv, Qingquan</au><au>Shen, Jun</au><au>Wang, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Autoencoder for Mass Spectrometry Feature Learning and Cancer Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cancer is still one of the most life threatening disease and by far it is still difficult to prevent, prone to recurrence and metastasis and high in mortality. Lots of studies indicate that early cancer diagnosis can effectively increase the survival rate of patients. But early stage cancer is difficult to be detected because of its inconspicuous features. Hence, convenient and effective cancer detection methods are urgently needed. In this paper, we propose to utilize deep autoencoder to learn latent representation of high-dimensional mass spectrometry data. Meanwhile, as a contrast, traditional particle swarm optimization (PSO) optimization algorithm are also used to select optimized features from mass spectrometry data. The learned features are further evaluated on three cancer datasets. The experimental results demonstrate that the cancer detection accuracy by learned features is as high as 100%. As our main contribution, the deep autoencoder method used in this study is a feasible and powerful instrument for mass spectrometry feature learning and also cancer diagnosis.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2977680</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8054-5446</orcidid><orcidid>https://orcid.org/0000-0002-6460-8950</orcidid><orcidid>https://orcid.org/0000-0002-9403-7140</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9020066
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Cancer
Cancer detection
deep autoencoder
Diagnosis
Early cancer diagnosis
Feature extraction
Machine learning
Mass spectrometry
mass spectrometry feature learning
Mass spectroscopy
Medical diagnosis
Particle swarm optimization
Proteomics
Scientific imaging
Spectroscopy
Tumors
title Deep Autoencoder for Mass Spectrometry Feature Learning and Cancer Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Autoencoder%20for%20Mass%20Spectrometry%20Feature%20Learning%20and%20Cancer%20Detection&rft.jtitle=IEEE%20access&rft.au=Zhou,%20Qingguo&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2977680&rft_dat=%3Cproquest_ieee_%3E2454725027%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454725027&rft_id=info:pmid/&rft_ieee_id=9020066&rft_doaj_id=oai_doaj_org_article_cb674a97fb514b9a84edd19f9833d6f1&rfr_iscdi=true