Segmenting images with support vector machines
The aim of this work is to propose an original image segmentation methodology to detect and localise objects or patterns in an image. This new technology has two parts: (a) the main module is a SVM neural network whose goal is the image segmentation in order to detect and localise objects having reg...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 823 vol.1 |
---|---|
container_issue | |
container_start_page | 820 |
container_title | |
container_volume | 1 |
creator | Reyna, R.A. Hernandez, N. Esteve, D. Cattoen, M. |
description | The aim of this work is to propose an original image segmentation methodology to detect and localise objects or patterns in an image. This new technology has two parts: (a) the main module is a SVM neural network whose goal is the image segmentation in order to detect and localise objects having regular patterns (represented by a block of pixels), and then, (b) a simple morphological processing, to eliminate isolated misclassified pixels. The importance of this methodology is highlighted with the results obtained in the recognition of 2D symbolic codes. Another advantage of our algorithm is its regularity that may be exploited to propose a parallel hardware architecture. |
doi_str_mv | 10.1109/ICIP.2000.901085 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_901085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>901085</ieee_id><sourcerecordid>901085</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-62ac84f75313cecdc692f98deb8635d232ea36adc5290dbc801705a5aac02cc53</originalsourceid><addsrcrecordid>eNotj0tLxDAURoMPcBxnL676B1pvbpImWUrxURhQUNdD5va2E7Gd0lTFf-_AuPpW53A-Ia4lFFKCv62r-qVAACg8SHDmRCxQOZk7o_2puATrQJXorT0TC2kQc-0cXIhVSh8HCLTR1uFCFK_c9TzMceiy2IeOU_YT512WvsZxP83ZN9O8n7I-0C4OnK7EeRs-E6_-dyneH-7fqqd8_fxYV3frPErQc15iIKdba5RUxNRQ6bH1ruGtK5VpUCEHVYaGDHpotuRAWjDBhECAREYtxc3RG5l5M06HtOl3c3yq_gC-Y0UV</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Segmenting images with support vector machines</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Reyna, R.A. ; Hernandez, N. ; Esteve, D. ; Cattoen, M.</creator><creatorcontrib>Reyna, R.A. ; Hernandez, N. ; Esteve, D. ; Cattoen, M.</creatorcontrib><description>The aim of this work is to propose an original image segmentation methodology to detect and localise objects or patterns in an image. This new technology has two parts: (a) the main module is a SVM neural network whose goal is the image segmentation in order to detect and localise objects having regular patterns (represented by a block of pixels), and then, (b) a simple morphological processing, to eliminate isolated misclassified pixels. The importance of this methodology is highlighted with the results obtained in the recognition of 2D symbolic codes. Another advantage of our algorithm is its regularity that may be exploited to propose a parallel hardware architecture.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 0780362977</identifier><identifier>ISBN: 9780780362970</identifier><identifier>EISSN: 2381-8549</identifier><identifier>DOI: 10.1109/ICIP.2000.901085</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Artificial neural networks ; Face recognition ; Image segmentation ; Neural networks ; Object detection ; Pattern recognition ; Pixel ; Support vector machine classification ; Support vector machines</subject><ispartof>Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101), 2000, Vol.1, p.820-823 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/901085$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/901085$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reyna, R.A.</creatorcontrib><creatorcontrib>Hernandez, N.</creatorcontrib><creatorcontrib>Esteve, D.</creatorcontrib><creatorcontrib>Cattoen, M.</creatorcontrib><title>Segmenting images with support vector machines</title><title>Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)</title><addtitle>ICIP</addtitle><description>The aim of this work is to propose an original image segmentation methodology to detect and localise objects or patterns in an image. This new technology has two parts: (a) the main module is a SVM neural network whose goal is the image segmentation in order to detect and localise objects having regular patterns (represented by a block of pixels), and then, (b) a simple morphological processing, to eliminate isolated misclassified pixels. The importance of this methodology is highlighted with the results obtained in the recognition of 2D symbolic codes. Another advantage of our algorithm is its regularity that may be exploited to propose a parallel hardware architecture.</description><subject>Application software</subject><subject>Artificial neural networks</subject><subject>Face recognition</subject><subject>Image segmentation</subject><subject>Neural networks</subject><subject>Object detection</subject><subject>Pattern recognition</subject><subject>Pixel</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>0780362977</isbn><isbn>9780780362970</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLxDAURoMPcBxnL676B1pvbpImWUrxURhQUNdD5va2E7Gd0lTFf-_AuPpW53A-Ia4lFFKCv62r-qVAACg8SHDmRCxQOZk7o_2puATrQJXorT0TC2kQc-0cXIhVSh8HCLTR1uFCFK_c9TzMceiy2IeOU_YT512WvsZxP83ZN9O8n7I-0C4OnK7EeRs-E6_-dyneH-7fqqd8_fxYV3frPErQc15iIKdba5RUxNRQ6bH1ruGtK5VpUCEHVYaGDHpotuRAWjDBhECAREYtxc3RG5l5M06HtOl3c3yq_gC-Y0UV</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Reyna, R.A.</creator><creator>Hernandez, N.</creator><creator>Esteve, D.</creator><creator>Cattoen, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Segmenting images with support vector machines</title><author>Reyna, R.A. ; Hernandez, N. ; Esteve, D. ; Cattoen, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-62ac84f75313cecdc692f98deb8635d232ea36adc5290dbc801705a5aac02cc53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Application software</topic><topic>Artificial neural networks</topic><topic>Face recognition</topic><topic>Image segmentation</topic><topic>Neural networks</topic><topic>Object detection</topic><topic>Pattern recognition</topic><topic>Pixel</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Reyna, R.A.</creatorcontrib><creatorcontrib>Hernandez, N.</creatorcontrib><creatorcontrib>Esteve, D.</creatorcontrib><creatorcontrib>Cattoen, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reyna, R.A.</au><au>Hernandez, N.</au><au>Esteve, D.</au><au>Cattoen, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Segmenting images with support vector machines</atitle><btitle>Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)</btitle><stitle>ICIP</stitle><date>2000</date><risdate>2000</risdate><volume>1</volume><spage>820</spage><epage>823 vol.1</epage><pages>820-823 vol.1</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>0780362977</isbn><isbn>9780780362970</isbn><abstract>The aim of this work is to propose an original image segmentation methodology to detect and localise objects or patterns in an image. This new technology has two parts: (a) the main module is a SVM neural network whose goal is the image segmentation in order to detect and localise objects having regular patterns (represented by a block of pixels), and then, (b) a simple morphological processing, to eliminate isolated misclassified pixels. The importance of this methodology is highlighted with the results obtained in the recognition of 2D symbolic codes. Another advantage of our algorithm is its regularity that may be exploited to propose a parallel hardware architecture.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2000.901085</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101), 2000, Vol.1, p.820-823 vol.1 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_901085 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Artificial neural networks Face recognition Image segmentation Neural networks Object detection Pattern recognition Pixel Support vector machine classification Support vector machines |
title | Segmenting images with support vector machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Segmenting%20images%20with%20support%20vector%20machines&rft.btitle=Proceedings%202000%20International%20Conference%20on%20Image%20Processing%20(Cat.%20No.00CH37101)&rft.au=Reyna,%20R.A.&rft.date=2000&rft.volume=1&rft.spage=820&rft.epage=823%20vol.1&rft.pages=820-823%20vol.1&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=0780362977&rft.isbn_list=9780780362970&rft_id=info:doi/10.1109/ICIP.2000.901085&rft_dat=%3Cieee_6IE%3E901085%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=901085&rfr_iscdi=true |