Segmenting images with support vector machines

The aim of this work is to propose an original image segmentation methodology to detect and localise objects or patterns in an image. This new technology has two parts: (a) the main module is a SVM neural network whose goal is the image segmentation in order to detect and localise objects having reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Reyna, R.A., Hernandez, N., Esteve, D., Cattoen, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 823 vol.1
container_issue
container_start_page 820
container_title
container_volume 1
creator Reyna, R.A.
Hernandez, N.
Esteve, D.
Cattoen, M.
description The aim of this work is to propose an original image segmentation methodology to detect and localise objects or patterns in an image. This new technology has two parts: (a) the main module is a SVM neural network whose goal is the image segmentation in order to detect and localise objects having regular patterns (represented by a block of pixels), and then, (b) a simple morphological processing, to eliminate isolated misclassified pixels. The importance of this methodology is highlighted with the results obtained in the recognition of 2D symbolic codes. Another advantage of our algorithm is its regularity that may be exploited to propose a parallel hardware architecture.
doi_str_mv 10.1109/ICIP.2000.901085
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_901085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>901085</ieee_id><sourcerecordid>901085</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-62ac84f75313cecdc692f98deb8635d232ea36adc5290dbc801705a5aac02cc53</originalsourceid><addsrcrecordid>eNotj0tLxDAURoMPcBxnL676B1pvbpImWUrxURhQUNdD5va2E7Gd0lTFf-_AuPpW53A-Ia4lFFKCv62r-qVAACg8SHDmRCxQOZk7o_2puATrQJXorT0TC2kQc-0cXIhVSh8HCLTR1uFCFK_c9TzMceiy2IeOU_YT512WvsZxP83ZN9O8n7I-0C4OnK7EeRs-E6_-dyneH-7fqqd8_fxYV3frPErQc15iIKdba5RUxNRQ6bH1ruGtK5VpUCEHVYaGDHpotuRAWjDBhECAREYtxc3RG5l5M06HtOl3c3yq_gC-Y0UV</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Segmenting images with support vector machines</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Reyna, R.A. ; Hernandez, N. ; Esteve, D. ; Cattoen, M.</creator><creatorcontrib>Reyna, R.A. ; Hernandez, N. ; Esteve, D. ; Cattoen, M.</creatorcontrib><description>The aim of this work is to propose an original image segmentation methodology to detect and localise objects or patterns in an image. This new technology has two parts: (a) the main module is a SVM neural network whose goal is the image segmentation in order to detect and localise objects having regular patterns (represented by a block of pixels), and then, (b) a simple morphological processing, to eliminate isolated misclassified pixels. The importance of this methodology is highlighted with the results obtained in the recognition of 2D symbolic codes. Another advantage of our algorithm is its regularity that may be exploited to propose a parallel hardware architecture.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 0780362977</identifier><identifier>ISBN: 9780780362970</identifier><identifier>EISSN: 2381-8549</identifier><identifier>DOI: 10.1109/ICIP.2000.901085</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Artificial neural networks ; Face recognition ; Image segmentation ; Neural networks ; Object detection ; Pattern recognition ; Pixel ; Support vector machine classification ; Support vector machines</subject><ispartof>Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101), 2000, Vol.1, p.820-823 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/901085$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/901085$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reyna, R.A.</creatorcontrib><creatorcontrib>Hernandez, N.</creatorcontrib><creatorcontrib>Esteve, D.</creatorcontrib><creatorcontrib>Cattoen, M.</creatorcontrib><title>Segmenting images with support vector machines</title><title>Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)</title><addtitle>ICIP</addtitle><description>The aim of this work is to propose an original image segmentation methodology to detect and localise objects or patterns in an image. This new technology has two parts: (a) the main module is a SVM neural network whose goal is the image segmentation in order to detect and localise objects having regular patterns (represented by a block of pixels), and then, (b) a simple morphological processing, to eliminate isolated misclassified pixels. The importance of this methodology is highlighted with the results obtained in the recognition of 2D symbolic codes. Another advantage of our algorithm is its regularity that may be exploited to propose a parallel hardware architecture.</description><subject>Application software</subject><subject>Artificial neural networks</subject><subject>Face recognition</subject><subject>Image segmentation</subject><subject>Neural networks</subject><subject>Object detection</subject><subject>Pattern recognition</subject><subject>Pixel</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>0780362977</isbn><isbn>9780780362970</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLxDAURoMPcBxnL676B1pvbpImWUrxURhQUNdD5va2E7Gd0lTFf-_AuPpW53A-Ia4lFFKCv62r-qVAACg8SHDmRCxQOZk7o_2puATrQJXorT0TC2kQc-0cXIhVSh8HCLTR1uFCFK_c9TzMceiy2IeOU_YT512WvsZxP83ZN9O8n7I-0C4OnK7EeRs-E6_-dyneH-7fqqd8_fxYV3frPErQc15iIKdba5RUxNRQ6bH1ruGtK5VpUCEHVYaGDHpotuRAWjDBhECAREYtxc3RG5l5M06HtOl3c3yq_gC-Y0UV</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Reyna, R.A.</creator><creator>Hernandez, N.</creator><creator>Esteve, D.</creator><creator>Cattoen, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Segmenting images with support vector machines</title><author>Reyna, R.A. ; Hernandez, N. ; Esteve, D. ; Cattoen, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-62ac84f75313cecdc692f98deb8635d232ea36adc5290dbc801705a5aac02cc53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Application software</topic><topic>Artificial neural networks</topic><topic>Face recognition</topic><topic>Image segmentation</topic><topic>Neural networks</topic><topic>Object detection</topic><topic>Pattern recognition</topic><topic>Pixel</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Reyna, R.A.</creatorcontrib><creatorcontrib>Hernandez, N.</creatorcontrib><creatorcontrib>Esteve, D.</creatorcontrib><creatorcontrib>Cattoen, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reyna, R.A.</au><au>Hernandez, N.</au><au>Esteve, D.</au><au>Cattoen, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Segmenting images with support vector machines</atitle><btitle>Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)</btitle><stitle>ICIP</stitle><date>2000</date><risdate>2000</risdate><volume>1</volume><spage>820</spage><epage>823 vol.1</epage><pages>820-823 vol.1</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>0780362977</isbn><isbn>9780780362970</isbn><abstract>The aim of this work is to propose an original image segmentation methodology to detect and localise objects or patterns in an image. This new technology has two parts: (a) the main module is a SVM neural network whose goal is the image segmentation in order to detect and localise objects having regular patterns (represented by a block of pixels), and then, (b) a simple morphological processing, to eliminate isolated misclassified pixels. The importance of this methodology is highlighted with the results obtained in the recognition of 2D symbolic codes. Another advantage of our algorithm is its regularity that may be exploited to propose a parallel hardware architecture.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2000.901085</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101), 2000, Vol.1, p.820-823 vol.1
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_901085
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Artificial neural networks
Face recognition
Image segmentation
Neural networks
Object detection
Pattern recognition
Pixel
Support vector machine classification
Support vector machines
title Segmenting images with support vector machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Segmenting%20images%20with%20support%20vector%20machines&rft.btitle=Proceedings%202000%20International%20Conference%20on%20Image%20Processing%20(Cat.%20No.00CH37101)&rft.au=Reyna,%20R.A.&rft.date=2000&rft.volume=1&rft.spage=820&rft.epage=823%20vol.1&rft.pages=820-823%20vol.1&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=0780362977&rft.isbn_list=9780780362970&rft_id=info:doi/10.1109/ICIP.2000.901085&rft_dat=%3Cieee_6IE%3E901085%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=901085&rfr_iscdi=true