Early Prediction of Sepsis via SMOTE Upsampling and Mutual Information Based Downsampling
Sepsis is a life-threatening response to infection that can lead to tissue damage, organ failure and death. The early prediction of sepsis is important, as it reduces undesirable patient outcomes associated with late-stage septic shock. However, effective early prediction is challenging, because the...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | Page 4 |
---|---|
container_issue | |
container_start_page | Page 1 |
container_title | |
container_volume | |
creator | Liu, Shiyu Ong, Ming Lun Kin Mun, Kar Yao, Jia Motani, Mehul |
description | Sepsis is a life-threatening response to infection that can lead to tissue damage, organ failure and death. The early prediction of sepsis is important, as it reduces undesirable patient outcomes associated with late-stage septic shock. However, effective early prediction is challenging, because the data is often heavily imbalanced against positive sepsis diagnosis. If the class imbalance is not addressed, models trained will tend to overfit in favour of the majority class, leading to degraded performance on the minority class. In this paper, we suggest a two-step method which consists of a mutual information based downsampling algorithm and a Synthetic Minority Over-sampling Technique (SMOTE), in order to effectively perform early prediction of sepsis. Our team, Kent Ridge AI (ranked 77th), obtained a utility score of -0.164 on the full test set by using the proposed two-step method. Additionally, we report crossvalidation results and identify several methods to improve performance. |
doi_str_mv | 10.22489/CinC.2019.239 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_9005890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9005890</ieee_id><sourcerecordid>9005890</sourcerecordid><originalsourceid>FETCH-LOGICAL-i609-35350012836ef9cc7a5b5ad4fee4deba4771baf138ffe06830caacdcc8ded0533</originalsourceid><addsrcrecordid>eNo1j81KAzEYRaMgWGq3btzkBabmZzJJljrWWmip0BF0Vb5JvkhkOjNMWqVvb_Hnbu7m3AOXkGvOpkLkxt6WsS2ngnE7FdKekYnVhmtheGFlwc_JSEihMmP06yWZpPTBTlHa2MKMyNsMhuZInwf00e1j19Iu0A32KSb6GYFuVutqRl_6BLu-ie07hdbT1WF_gIYu2tANO_hZ3UNCTx-6r_afvCIXAZqEk78ek-pxVpVP2XI9X5R3yywWzGZSScUYF0YWGKxzGlStwOcBMfdYQ641ryFwaUJAVhjJHIDzzhmPnikpx-TmVxsRcdsPcQfDcWtPD41l8humjFN5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Early Prediction of Sepsis via SMOTE Upsampling and Mutual Information Based Downsampling</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Shiyu ; Ong, Ming Lun ; Kin Mun, Kar ; Yao, Jia ; Motani, Mehul</creator><creatorcontrib>Liu, Shiyu ; Ong, Ming Lun ; Kin Mun, Kar ; Yao, Jia ; Motani, Mehul</creatorcontrib><description>Sepsis is a life-threatening response to infection that can lead to tissue damage, organ failure and death. The early prediction of sepsis is important, as it reduces undesirable patient outcomes associated with late-stage septic shock. However, effective early prediction is challenging, because the data is often heavily imbalanced against positive sepsis diagnosis. If the class imbalance is not addressed, models trained will tend to overfit in favour of the majority class, leading to degraded performance on the minority class. In this paper, we suggest a two-step method which consists of a mutual information based downsampling algorithm and a Synthetic Minority Over-sampling Technique (SMOTE), in order to effectively perform early prediction of sepsis. Our team, Kent Ridge AI (ranked 77th), obtained a utility score of -0.164 on the full test set by using the proposed two-step method. Additionally, we report crossvalidation results and identify several methods to improve performance.</description><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 9781728169361</identifier><identifier>EISBN: 1728169364</identifier><identifier>DOI: 10.22489/CinC.2019.239</identifier><language>eng</language><publisher>Creative Commons</publisher><subject>Boosting ; Decision trees ; Mutual information ; Neural networks ; Sampling methods ; Training ; Training data</subject><ispartof>2019 Computing in Cardiology (CinC), 2019, p.Page 1-Page 4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,776,780,785,786,27904</link.rule.ids></links><search><creatorcontrib>Liu, Shiyu</creatorcontrib><creatorcontrib>Ong, Ming Lun</creatorcontrib><creatorcontrib>Kin Mun, Kar</creatorcontrib><creatorcontrib>Yao, Jia</creatorcontrib><creatorcontrib>Motani, Mehul</creatorcontrib><title>Early Prediction of Sepsis via SMOTE Upsampling and Mutual Information Based Downsampling</title><title>2019 Computing in Cardiology (CinC)</title><addtitle>CIC</addtitle><description>Sepsis is a life-threatening response to infection that can lead to tissue damage, organ failure and death. The early prediction of sepsis is important, as it reduces undesirable patient outcomes associated with late-stage septic shock. However, effective early prediction is challenging, because the data is often heavily imbalanced against positive sepsis diagnosis. If the class imbalance is not addressed, models trained will tend to overfit in favour of the majority class, leading to degraded performance on the minority class. In this paper, we suggest a two-step method which consists of a mutual information based downsampling algorithm and a Synthetic Minority Over-sampling Technique (SMOTE), in order to effectively perform early prediction of sepsis. Our team, Kent Ridge AI (ranked 77th), obtained a utility score of -0.164 on the full test set by using the proposed two-step method. Additionally, we report crossvalidation results and identify several methods to improve performance.</description><subject>Boosting</subject><subject>Decision trees</subject><subject>Mutual information</subject><subject>Neural networks</subject><subject>Sampling methods</subject><subject>Training</subject><subject>Training data</subject><issn>2325-887X</issn><isbn>9781728169361</isbn><isbn>1728169364</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81KAzEYRaMgWGq3btzkBabmZzJJljrWWmip0BF0Vb5JvkhkOjNMWqVvb_Hnbu7m3AOXkGvOpkLkxt6WsS2ngnE7FdKekYnVhmtheGFlwc_JSEihMmP06yWZpPTBTlHa2MKMyNsMhuZInwf00e1j19Iu0A32KSb6GYFuVutqRl_6BLu-ie07hdbT1WF_gIYu2tANO_hZ3UNCTx-6r_afvCIXAZqEk78ek-pxVpVP2XI9X5R3yywWzGZSScUYF0YWGKxzGlStwOcBMfdYQ641ryFwaUJAVhjJHIDzzhmPnikpx-TmVxsRcdsPcQfDcWtPD41l8humjFN5</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Liu, Shiyu</creator><creator>Ong, Ming Lun</creator><creator>Kin Mun, Kar</creator><creator>Yao, Jia</creator><creator>Motani, Mehul</creator><general>Creative Commons</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201909</creationdate><title>Early Prediction of Sepsis via SMOTE Upsampling and Mutual Information Based Downsampling</title><author>Liu, Shiyu ; Ong, Ming Lun ; Kin Mun, Kar ; Yao, Jia ; Motani, Mehul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i609-35350012836ef9cc7a5b5ad4fee4deba4771baf138ffe06830caacdcc8ded0533</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boosting</topic><topic>Decision trees</topic><topic>Mutual information</topic><topic>Neural networks</topic><topic>Sampling methods</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shiyu</creatorcontrib><creatorcontrib>Ong, Ming Lun</creatorcontrib><creatorcontrib>Kin Mun, Kar</creatorcontrib><creatorcontrib>Yao, Jia</creatorcontrib><creatorcontrib>Motani, Mehul</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shiyu</au><au>Ong, Ming Lun</au><au>Kin Mun, Kar</au><au>Yao, Jia</au><au>Motani, Mehul</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Early Prediction of Sepsis via SMOTE Upsampling and Mutual Information Based Downsampling</atitle><btitle>2019 Computing in Cardiology (CinC)</btitle><stitle>CIC</stitle><date>2019-09</date><risdate>2019</risdate><spage>Page 1</spage><epage>Page 4</epage><pages>Page 1-Page 4</pages><eissn>2325-887X</eissn><eisbn>9781728169361</eisbn><eisbn>1728169364</eisbn><abstract>Sepsis is a life-threatening response to infection that can lead to tissue damage, organ failure and death. The early prediction of sepsis is important, as it reduces undesirable patient outcomes associated with late-stage septic shock. However, effective early prediction is challenging, because the data is often heavily imbalanced against positive sepsis diagnosis. If the class imbalance is not addressed, models trained will tend to overfit in favour of the majority class, leading to degraded performance on the minority class. In this paper, we suggest a two-step method which consists of a mutual information based downsampling algorithm and a Synthetic Minority Over-sampling Technique (SMOTE), in order to effectively perform early prediction of sepsis. Our team, Kent Ridge AI (ranked 77th), obtained a utility score of -0.164 on the full test set by using the proposed two-step method. Additionally, we report crossvalidation results and identify several methods to improve performance.</abstract><pub>Creative Commons</pub><doi>10.22489/CinC.2019.239</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2325-887X |
ispartof | 2019 Computing in Cardiology (CinC), 2019, p.Page 1-Page 4 |
issn | 2325-887X |
language | eng |
recordid | cdi_ieee_primary_9005890 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Boosting Decision trees Mutual information Neural networks Sampling methods Training Training data |
title | Early Prediction of Sepsis via SMOTE Upsampling and Mutual Information Based Downsampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Early%20Prediction%20of%20Sepsis%20via%20SMOTE%20Upsampling%20and%20Mutual%20Information%20Based%20Downsampling&rft.btitle=2019%20Computing%20in%20Cardiology%20(CinC)&rft.au=Liu,%20Shiyu&rft.date=2019-09&rft.spage=Page%201&rft.epage=Page%204&rft.pages=Page%201-Page%204&rft.eissn=2325-887X&rft_id=info:doi/10.22489/CinC.2019.239&rft_dat=%3Cieee%3E9005890%3C/ieee%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781728169361&rft.eisbn_list=1728169364&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9005890&rfr_iscdi=true |