Early Prediction of Sepsis via SMOTE Upsampling and Mutual Information Based Downsampling

Sepsis is a life-threatening response to infection that can lead to tissue damage, organ failure and death. The early prediction of sepsis is important, as it reduces undesirable patient outcomes associated with late-stage septic shock. However, effective early prediction is challenging, because the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liu, Shiyu, Ong, Ming Lun, Kin Mun, Kar, Yao, Jia, Motani, Mehul
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page Page 4
container_issue
container_start_page Page 1
container_title
container_volume
creator Liu, Shiyu
Ong, Ming Lun
Kin Mun, Kar
Yao, Jia
Motani, Mehul
description Sepsis is a life-threatening response to infection that can lead to tissue damage, organ failure and death. The early prediction of sepsis is important, as it reduces undesirable patient outcomes associated with late-stage septic shock. However, effective early prediction is challenging, because the data is often heavily imbalanced against positive sepsis diagnosis. If the class imbalance is not addressed, models trained will tend to overfit in favour of the majority class, leading to degraded performance on the minority class. In this paper, we suggest a two-step method which consists of a mutual information based downsampling algorithm and a Synthetic Minority Over-sampling Technique (SMOTE), in order to effectively perform early prediction of sepsis. Our team, Kent Ridge AI (ranked 77th), obtained a utility score of -0.164 on the full test set by using the proposed two-step method. Additionally, we report crossvalidation results and identify several methods to improve performance.
doi_str_mv 10.22489/CinC.2019.239
format Conference Proceeding
fullrecord <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_9005890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9005890</ieee_id><sourcerecordid>9005890</sourcerecordid><originalsourceid>FETCH-LOGICAL-i609-35350012836ef9cc7a5b5ad4fee4deba4771baf138ffe06830caacdcc8ded0533</originalsourceid><addsrcrecordid>eNo1j81KAzEYRaMgWGq3btzkBabmZzJJljrWWmip0BF0Vb5JvkhkOjNMWqVvb_Hnbu7m3AOXkGvOpkLkxt6WsS2ngnE7FdKekYnVhmtheGFlwc_JSEihMmP06yWZpPTBTlHa2MKMyNsMhuZInwf00e1j19Iu0A32KSb6GYFuVutqRl_6BLu-ie07hdbT1WF_gIYu2tANO_hZ3UNCTx-6r_afvCIXAZqEk78ek-pxVpVP2XI9X5R3yywWzGZSScUYF0YWGKxzGlStwOcBMfdYQ641ryFwaUJAVhjJHIDzzhmPnikpx-TmVxsRcdsPcQfDcWtPD41l8humjFN5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Early Prediction of Sepsis via SMOTE Upsampling and Mutual Information Based Downsampling</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Shiyu ; Ong, Ming Lun ; Kin Mun, Kar ; Yao, Jia ; Motani, Mehul</creator><creatorcontrib>Liu, Shiyu ; Ong, Ming Lun ; Kin Mun, Kar ; Yao, Jia ; Motani, Mehul</creatorcontrib><description>Sepsis is a life-threatening response to infection that can lead to tissue damage, organ failure and death. The early prediction of sepsis is important, as it reduces undesirable patient outcomes associated with late-stage septic shock. However, effective early prediction is challenging, because the data is often heavily imbalanced against positive sepsis diagnosis. If the class imbalance is not addressed, models trained will tend to overfit in favour of the majority class, leading to degraded performance on the minority class. In this paper, we suggest a two-step method which consists of a mutual information based downsampling algorithm and a Synthetic Minority Over-sampling Technique (SMOTE), in order to effectively perform early prediction of sepsis. Our team, Kent Ridge AI (ranked 77th), obtained a utility score of -0.164 on the full test set by using the proposed two-step method. Additionally, we report crossvalidation results and identify several methods to improve performance.</description><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 9781728169361</identifier><identifier>EISBN: 1728169364</identifier><identifier>DOI: 10.22489/CinC.2019.239</identifier><language>eng</language><publisher>Creative Commons</publisher><subject>Boosting ; Decision trees ; Mutual information ; Neural networks ; Sampling methods ; Training ; Training data</subject><ispartof>2019 Computing in Cardiology (CinC), 2019, p.Page 1-Page 4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,776,780,785,786,27904</link.rule.ids></links><search><creatorcontrib>Liu, Shiyu</creatorcontrib><creatorcontrib>Ong, Ming Lun</creatorcontrib><creatorcontrib>Kin Mun, Kar</creatorcontrib><creatorcontrib>Yao, Jia</creatorcontrib><creatorcontrib>Motani, Mehul</creatorcontrib><title>Early Prediction of Sepsis via SMOTE Upsampling and Mutual Information Based Downsampling</title><title>2019 Computing in Cardiology (CinC)</title><addtitle>CIC</addtitle><description>Sepsis is a life-threatening response to infection that can lead to tissue damage, organ failure and death. The early prediction of sepsis is important, as it reduces undesirable patient outcomes associated with late-stage septic shock. However, effective early prediction is challenging, because the data is often heavily imbalanced against positive sepsis diagnosis. If the class imbalance is not addressed, models trained will tend to overfit in favour of the majority class, leading to degraded performance on the minority class. In this paper, we suggest a two-step method which consists of a mutual information based downsampling algorithm and a Synthetic Minority Over-sampling Technique (SMOTE), in order to effectively perform early prediction of sepsis. Our team, Kent Ridge AI (ranked 77th), obtained a utility score of -0.164 on the full test set by using the proposed two-step method. Additionally, we report crossvalidation results and identify several methods to improve performance.</description><subject>Boosting</subject><subject>Decision trees</subject><subject>Mutual information</subject><subject>Neural networks</subject><subject>Sampling methods</subject><subject>Training</subject><subject>Training data</subject><issn>2325-887X</issn><isbn>9781728169361</isbn><isbn>1728169364</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81KAzEYRaMgWGq3btzkBabmZzJJljrWWmip0BF0Vb5JvkhkOjNMWqVvb_Hnbu7m3AOXkGvOpkLkxt6WsS2ngnE7FdKekYnVhmtheGFlwc_JSEihMmP06yWZpPTBTlHa2MKMyNsMhuZInwf00e1j19Iu0A32KSb6GYFuVutqRl_6BLu-ie07hdbT1WF_gIYu2tANO_hZ3UNCTx-6r_afvCIXAZqEk78ek-pxVpVP2XI9X5R3yywWzGZSScUYF0YWGKxzGlStwOcBMfdYQ641ryFwaUJAVhjJHIDzzhmPnikpx-TmVxsRcdsPcQfDcWtPD41l8humjFN5</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Liu, Shiyu</creator><creator>Ong, Ming Lun</creator><creator>Kin Mun, Kar</creator><creator>Yao, Jia</creator><creator>Motani, Mehul</creator><general>Creative Commons</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201909</creationdate><title>Early Prediction of Sepsis via SMOTE Upsampling and Mutual Information Based Downsampling</title><author>Liu, Shiyu ; Ong, Ming Lun ; Kin Mun, Kar ; Yao, Jia ; Motani, Mehul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i609-35350012836ef9cc7a5b5ad4fee4deba4771baf138ffe06830caacdcc8ded0533</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boosting</topic><topic>Decision trees</topic><topic>Mutual information</topic><topic>Neural networks</topic><topic>Sampling methods</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shiyu</creatorcontrib><creatorcontrib>Ong, Ming Lun</creatorcontrib><creatorcontrib>Kin Mun, Kar</creatorcontrib><creatorcontrib>Yao, Jia</creatorcontrib><creatorcontrib>Motani, Mehul</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shiyu</au><au>Ong, Ming Lun</au><au>Kin Mun, Kar</au><au>Yao, Jia</au><au>Motani, Mehul</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Early Prediction of Sepsis via SMOTE Upsampling and Mutual Information Based Downsampling</atitle><btitle>2019 Computing in Cardiology (CinC)</btitle><stitle>CIC</stitle><date>2019-09</date><risdate>2019</risdate><spage>Page 1</spage><epage>Page 4</epage><pages>Page 1-Page 4</pages><eissn>2325-887X</eissn><eisbn>9781728169361</eisbn><eisbn>1728169364</eisbn><abstract>Sepsis is a life-threatening response to infection that can lead to tissue damage, organ failure and death. The early prediction of sepsis is important, as it reduces undesirable patient outcomes associated with late-stage septic shock. However, effective early prediction is challenging, because the data is often heavily imbalanced against positive sepsis diagnosis. If the class imbalance is not addressed, models trained will tend to overfit in favour of the majority class, leading to degraded performance on the minority class. In this paper, we suggest a two-step method which consists of a mutual information based downsampling algorithm and a Synthetic Minority Over-sampling Technique (SMOTE), in order to effectively perform early prediction of sepsis. Our team, Kent Ridge AI (ranked 77th), obtained a utility score of -0.164 on the full test set by using the proposed two-step method. Additionally, we report crossvalidation results and identify several methods to improve performance.</abstract><pub>Creative Commons</pub><doi>10.22489/CinC.2019.239</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2325-887X
ispartof 2019 Computing in Cardiology (CinC), 2019, p.Page 1-Page 4
issn 2325-887X
language eng
recordid cdi_ieee_primary_9005890
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Boosting
Decision trees
Mutual information
Neural networks
Sampling methods
Training
Training data
title Early Prediction of Sepsis via SMOTE Upsampling and Mutual Information Based Downsampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Early%20Prediction%20of%20Sepsis%20via%20SMOTE%20Upsampling%20and%20Mutual%20Information%20Based%20Downsampling&rft.btitle=2019%20Computing%20in%20Cardiology%20(CinC)&rft.au=Liu,%20Shiyu&rft.date=2019-09&rft.spage=Page%201&rft.epage=Page%204&rft.pages=Page%201-Page%204&rft.eissn=2325-887X&rft_id=info:doi/10.22489/CinC.2019.239&rft_dat=%3Cieee%3E9005890%3C/ieee%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781728169361&rft.eisbn_list=1728169364&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9005890&rfr_iscdi=true