Online State Estimation of a Fin-Actuated Underwater Robot Using Artificial Lateral Line System

A lateral line system is a flow-responsive organ system, with which fish can effectively sense the surrounding flow field, thus serving functions in flow-aided fish behaviors. Inspired by such a biological characteristic, artificial lateral line systems (ALLSs) have been developed for promoting tech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2020-04, Vol.36 (2), p.472-487
Hauptverfasser: Zheng, Xingwen, Wang, Wei, Xiong, Minglei, Xie, Guangming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 487
container_issue 2
container_start_page 472
container_title IEEE transactions on robotics
container_volume 36
creator Zheng, Xingwen
Wang, Wei
Xiong, Minglei
Xie, Guangming
description A lateral line system is a flow-responsive organ system, with which fish can effectively sense the surrounding flow field, thus serving functions in flow-aided fish behaviors. Inspired by such a biological characteristic, artificial lateral line systems (ALLSs) have been developed for promoting technological innovations of underwater robots. In this article, we focus on investigating state estimation of a freely swimming robotic fish in multiple motions, including rectilinear motion, turning motion, gliding motion, and spiral motion. The state refers to motion parameters, including linear velocity, angular velocity, motion radius, etc., and trajectory of the robotic fish. Specifically, for each motion, a pressure variation (PV) model that links motion parameters to PVs surrounding the robotic fish is first built; then, a linear regression analysis method is used for determining the model parameters. Based on the acquired PV model, motion parameters can be estimated by solving the PV model inversely using the PVs measured by the ALLS. Finally, a trajectory estimation method is proposed for estimating trajectory of the robotic fish based on the ALLS-estimated motion parameters. The experimental results show that the robotic fish is able to estimate its trajectory in the aforementioned multiple motions with the aid of ALLS, with small estimation errors.
doi_str_mv 10.1109/TRO.2019.2956343
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9004516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9004516</ieee_id><sourcerecordid>2387070457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-3d3dc6150d4db77325388957a0e20ecee2d1493a3a70b39ca184182289a998d33</originalsourceid><addsrcrecordid>eNo9UE1rAjEUDKWF2o97oZdAz2tf8rJuchTRtiAIVs8hbrIlors2iRT_fbNVepqB-Xi8IeSJwZAxUK-r5WLIgakhV-UIBV6RAVOCFSBG8jrzsuQFgpK35C7GLQAXCnBA9KLd-dbRz2SSo9OY_N4k37W0a6ihM98W4zods2bpurUu_GQa6LLbdImuo2-_6Dgk3_jamx2d92KPf42nmNz-gdw0Zhfd4wXvyXo2XU3ei_ni7WMynhc1okwFWrT1iJVghd1UFfISpVRlZcBxcLVz3DKh0KCpYIOqNkwKJjmXyiglLeI9eTn3HkL3fXQx6W13DG0-qTnKCioQZZVdcHbVoYsxuEYfQn44nDQD3c-o84y6n1FfZsyR53PEO-f-7QpyHxvhL7TNbRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387070457</pqid></control><display><type>article</type><title>Online State Estimation of a Fin-Actuated Underwater Robot Using Artificial Lateral Line System</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Xingwen ; Wang, Wei ; Xiong, Minglei ; Xie, Guangming</creator><creatorcontrib>Zheng, Xingwen ; Wang, Wei ; Xiong, Minglei ; Xie, Guangming</creatorcontrib><description>A lateral line system is a flow-responsive organ system, with which fish can effectively sense the surrounding flow field, thus serving functions in flow-aided fish behaviors. Inspired by such a biological characteristic, artificial lateral line systems (ALLSs) have been developed for promoting technological innovations of underwater robots. In this article, we focus on investigating state estimation of a freely swimming robotic fish in multiple motions, including rectilinear motion, turning motion, gliding motion, and spiral motion. The state refers to motion parameters, including linear velocity, angular velocity, motion radius, etc., and trajectory of the robotic fish. Specifically, for each motion, a pressure variation (PV) model that links motion parameters to PVs surrounding the robotic fish is first built; then, a linear regression analysis method is used for determining the model parameters. Based on the acquired PV model, motion parameters can be estimated by solving the PV model inversely using the PVs measured by the ALLS. Finally, a trajectory estimation method is proposed for estimating trajectory of the robotic fish based on the ALLS-estimated motion parameters. The experimental results show that the robotic fish is able to estimate its trajectory in the aforementioned multiple motions with the aid of ALLS, with small estimation errors.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2019.2956343</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Angular velocity ; Artificial lateral line ; Estimation ; Fish ; flow sensing ; Gliding ; Mathematical models ; Parameter estimation ; Pressure sensors ; pressure variation (PV) ; Regression analysis ; Robot sensing systems ; robotic fish ; Robotics ; State estimation ; Swimming ; Trajectory ; Trajectory analysis ; Underwater robots ; Unmanned underwater vehicles</subject><ispartof>IEEE transactions on robotics, 2020-04, Vol.36 (2), p.472-487</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-3d3dc6150d4db77325388957a0e20ecee2d1493a3a70b39ca184182289a998d33</citedby><cites>FETCH-LOGICAL-c338t-3d3dc6150d4db77325388957a0e20ecee2d1493a3a70b39ca184182289a998d33</cites><orcidid>0000-0003-4993-1896 ; 0000-0003-4023-2845 ; 0000-0001-6504-0087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9004516$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9004516$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Xingwen</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Xiong, Minglei</creatorcontrib><creatorcontrib>Xie, Guangming</creatorcontrib><title>Online State Estimation of a Fin-Actuated Underwater Robot Using Artificial Lateral Line System</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>A lateral line system is a flow-responsive organ system, with which fish can effectively sense the surrounding flow field, thus serving functions in flow-aided fish behaviors. Inspired by such a biological characteristic, artificial lateral line systems (ALLSs) have been developed for promoting technological innovations of underwater robots. In this article, we focus on investigating state estimation of a freely swimming robotic fish in multiple motions, including rectilinear motion, turning motion, gliding motion, and spiral motion. The state refers to motion parameters, including linear velocity, angular velocity, motion radius, etc., and trajectory of the robotic fish. Specifically, for each motion, a pressure variation (PV) model that links motion parameters to PVs surrounding the robotic fish is first built; then, a linear regression analysis method is used for determining the model parameters. Based on the acquired PV model, motion parameters can be estimated by solving the PV model inversely using the PVs measured by the ALLS. Finally, a trajectory estimation method is proposed for estimating trajectory of the robotic fish based on the ALLS-estimated motion parameters. The experimental results show that the robotic fish is able to estimate its trajectory in the aforementioned multiple motions with the aid of ALLS, with small estimation errors.</description><subject>Angular velocity</subject><subject>Artificial lateral line</subject><subject>Estimation</subject><subject>Fish</subject><subject>flow sensing</subject><subject>Gliding</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Pressure sensors</subject><subject>pressure variation (PV)</subject><subject>Regression analysis</subject><subject>Robot sensing systems</subject><subject>robotic fish</subject><subject>Robotics</subject><subject>State estimation</subject><subject>Swimming</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><subject>Underwater robots</subject><subject>Unmanned underwater vehicles</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1rAjEUDKWF2o97oZdAz2tf8rJuchTRtiAIVs8hbrIlors2iRT_fbNVepqB-Xi8IeSJwZAxUK-r5WLIgakhV-UIBV6RAVOCFSBG8jrzsuQFgpK35C7GLQAXCnBA9KLd-dbRz2SSo9OY_N4k37W0a6ihM98W4zods2bpurUu_GQa6LLbdImuo2-_6Dgk3_jamx2d92KPf42nmNz-gdw0Zhfd4wXvyXo2XU3ei_ni7WMynhc1okwFWrT1iJVghd1UFfISpVRlZcBxcLVz3DKh0KCpYIOqNkwKJjmXyiglLeI9eTn3HkL3fXQx6W13DG0-qTnKCioQZZVdcHbVoYsxuEYfQn44nDQD3c-o84y6n1FfZsyR53PEO-f-7QpyHxvhL7TNbRQ</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Zheng, Xingwen</creator><creator>Wang, Wei</creator><creator>Xiong, Minglei</creator><creator>Xie, Guangming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4993-1896</orcidid><orcidid>https://orcid.org/0000-0003-4023-2845</orcidid><orcidid>https://orcid.org/0000-0001-6504-0087</orcidid></search><sort><creationdate>202004</creationdate><title>Online State Estimation of a Fin-Actuated Underwater Robot Using Artificial Lateral Line System</title><author>Zheng, Xingwen ; Wang, Wei ; Xiong, Minglei ; Xie, Guangming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-3d3dc6150d4db77325388957a0e20ecee2d1493a3a70b39ca184182289a998d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angular velocity</topic><topic>Artificial lateral line</topic><topic>Estimation</topic><topic>Fish</topic><topic>flow sensing</topic><topic>Gliding</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Pressure sensors</topic><topic>pressure variation (PV)</topic><topic>Regression analysis</topic><topic>Robot sensing systems</topic><topic>robotic fish</topic><topic>Robotics</topic><topic>State estimation</topic><topic>Swimming</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><topic>Underwater robots</topic><topic>Unmanned underwater vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xingwen</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Xiong, Minglei</creatorcontrib><creatorcontrib>Xie, Guangming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Xingwen</au><au>Wang, Wei</au><au>Xiong, Minglei</au><au>Xie, Guangming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online State Estimation of a Fin-Actuated Underwater Robot Using Artificial Lateral Line System</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2020-04</date><risdate>2020</risdate><volume>36</volume><issue>2</issue><spage>472</spage><epage>487</epage><pages>472-487</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>A lateral line system is a flow-responsive organ system, with which fish can effectively sense the surrounding flow field, thus serving functions in flow-aided fish behaviors. Inspired by such a biological characteristic, artificial lateral line systems (ALLSs) have been developed for promoting technological innovations of underwater robots. In this article, we focus on investigating state estimation of a freely swimming robotic fish in multiple motions, including rectilinear motion, turning motion, gliding motion, and spiral motion. The state refers to motion parameters, including linear velocity, angular velocity, motion radius, etc., and trajectory of the robotic fish. Specifically, for each motion, a pressure variation (PV) model that links motion parameters to PVs surrounding the robotic fish is first built; then, a linear regression analysis method is used for determining the model parameters. Based on the acquired PV model, motion parameters can be estimated by solving the PV model inversely using the PVs measured by the ALLS. Finally, a trajectory estimation method is proposed for estimating trajectory of the robotic fish based on the ALLS-estimated motion parameters. The experimental results show that the robotic fish is able to estimate its trajectory in the aforementioned multiple motions with the aid of ALLS, with small estimation errors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2019.2956343</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4993-1896</orcidid><orcidid>https://orcid.org/0000-0003-4023-2845</orcidid><orcidid>https://orcid.org/0000-0001-6504-0087</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2020-04, Vol.36 (2), p.472-487
issn 1552-3098
1941-0468
language eng
recordid cdi_ieee_primary_9004516
source IEEE Electronic Library (IEL)
subjects Angular velocity
Artificial lateral line
Estimation
Fish
flow sensing
Gliding
Mathematical models
Parameter estimation
Pressure sensors
pressure variation (PV)
Regression analysis
Robot sensing systems
robotic fish
Robotics
State estimation
Swimming
Trajectory
Trajectory analysis
Underwater robots
Unmanned underwater vehicles
title Online State Estimation of a Fin-Actuated Underwater Robot Using Artificial Lateral Line System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20State%20Estimation%20of%20a%20Fin-Actuated%20Underwater%20Robot%20Using%20Artificial%20Lateral%20Line%20System&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Zheng,%20Xingwen&rft.date=2020-04&rft.volume=36&rft.issue=2&rft.spage=472&rft.epage=487&rft.pages=472-487&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2019.2956343&rft_dat=%3Cproquest_RIE%3E2387070457%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387070457&rft_id=info:pmid/&rft_ieee_id=9004516&rfr_iscdi=true