Online State Estimation of a Fin-Actuated Underwater Robot Using Artificial Lateral Line System
A lateral line system is a flow-responsive organ system, with which fish can effectively sense the surrounding flow field, thus serving functions in flow-aided fish behaviors. Inspired by such a biological characteristic, artificial lateral line systems (ALLSs) have been developed for promoting tech...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2020-04, Vol.36 (2), p.472-487 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 487 |
---|---|
container_issue | 2 |
container_start_page | 472 |
container_title | IEEE transactions on robotics |
container_volume | 36 |
creator | Zheng, Xingwen Wang, Wei Xiong, Minglei Xie, Guangming |
description | A lateral line system is a flow-responsive organ system, with which fish can effectively sense the surrounding flow field, thus serving functions in flow-aided fish behaviors. Inspired by such a biological characteristic, artificial lateral line systems (ALLSs) have been developed for promoting technological innovations of underwater robots. In this article, we focus on investigating state estimation of a freely swimming robotic fish in multiple motions, including rectilinear motion, turning motion, gliding motion, and spiral motion. The state refers to motion parameters, including linear velocity, angular velocity, motion radius, etc., and trajectory of the robotic fish. Specifically, for each motion, a pressure variation (PV) model that links motion parameters to PVs surrounding the robotic fish is first built; then, a linear regression analysis method is used for determining the model parameters. Based on the acquired PV model, motion parameters can be estimated by solving the PV model inversely using the PVs measured by the ALLS. Finally, a trajectory estimation method is proposed for estimating trajectory of the robotic fish based on the ALLS-estimated motion parameters. The experimental results show that the robotic fish is able to estimate its trajectory in the aforementioned multiple motions with the aid of ALLS, with small estimation errors. |
doi_str_mv | 10.1109/TRO.2019.2956343 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9004516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9004516</ieee_id><sourcerecordid>2387070457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-3d3dc6150d4db77325388957a0e20ecee2d1493a3a70b39ca184182289a998d33</originalsourceid><addsrcrecordid>eNo9UE1rAjEUDKWF2o97oZdAz2tf8rJuchTRtiAIVs8hbrIlors2iRT_fbNVepqB-Xi8IeSJwZAxUK-r5WLIgakhV-UIBV6RAVOCFSBG8jrzsuQFgpK35C7GLQAXCnBA9KLd-dbRz2SSo9OY_N4k37W0a6ihM98W4zods2bpurUu_GQa6LLbdImuo2-_6Dgk3_jamx2d92KPf42nmNz-gdw0Zhfd4wXvyXo2XU3ei_ni7WMynhc1okwFWrT1iJVghd1UFfISpVRlZcBxcLVz3DKh0KCpYIOqNkwKJjmXyiglLeI9eTn3HkL3fXQx6W13DG0-qTnKCioQZZVdcHbVoYsxuEYfQn44nDQD3c-o84y6n1FfZsyR53PEO-f-7QpyHxvhL7TNbRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387070457</pqid></control><display><type>article</type><title>Online State Estimation of a Fin-Actuated Underwater Robot Using Artificial Lateral Line System</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Xingwen ; Wang, Wei ; Xiong, Minglei ; Xie, Guangming</creator><creatorcontrib>Zheng, Xingwen ; Wang, Wei ; Xiong, Minglei ; Xie, Guangming</creatorcontrib><description>A lateral line system is a flow-responsive organ system, with which fish can effectively sense the surrounding flow field, thus serving functions in flow-aided fish behaviors. Inspired by such a biological characteristic, artificial lateral line systems (ALLSs) have been developed for promoting technological innovations of underwater robots. In this article, we focus on investigating state estimation of a freely swimming robotic fish in multiple motions, including rectilinear motion, turning motion, gliding motion, and spiral motion. The state refers to motion parameters, including linear velocity, angular velocity, motion radius, etc., and trajectory of the robotic fish. Specifically, for each motion, a pressure variation (PV) model that links motion parameters to PVs surrounding the robotic fish is first built; then, a linear regression analysis method is used for determining the model parameters. Based on the acquired PV model, motion parameters can be estimated by solving the PV model inversely using the PVs measured by the ALLS. Finally, a trajectory estimation method is proposed for estimating trajectory of the robotic fish based on the ALLS-estimated motion parameters. The experimental results show that the robotic fish is able to estimate its trajectory in the aforementioned multiple motions with the aid of ALLS, with small estimation errors.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2019.2956343</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Angular velocity ; Artificial lateral line ; Estimation ; Fish ; flow sensing ; Gliding ; Mathematical models ; Parameter estimation ; Pressure sensors ; pressure variation (PV) ; Regression analysis ; Robot sensing systems ; robotic fish ; Robotics ; State estimation ; Swimming ; Trajectory ; Trajectory analysis ; Underwater robots ; Unmanned underwater vehicles</subject><ispartof>IEEE transactions on robotics, 2020-04, Vol.36 (2), p.472-487</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-3d3dc6150d4db77325388957a0e20ecee2d1493a3a70b39ca184182289a998d33</citedby><cites>FETCH-LOGICAL-c338t-3d3dc6150d4db77325388957a0e20ecee2d1493a3a70b39ca184182289a998d33</cites><orcidid>0000-0003-4993-1896 ; 0000-0003-4023-2845 ; 0000-0001-6504-0087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9004516$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9004516$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Xingwen</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Xiong, Minglei</creatorcontrib><creatorcontrib>Xie, Guangming</creatorcontrib><title>Online State Estimation of a Fin-Actuated Underwater Robot Using Artificial Lateral Line System</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>A lateral line system is a flow-responsive organ system, with which fish can effectively sense the surrounding flow field, thus serving functions in flow-aided fish behaviors. Inspired by such a biological characteristic, artificial lateral line systems (ALLSs) have been developed for promoting technological innovations of underwater robots. In this article, we focus on investigating state estimation of a freely swimming robotic fish in multiple motions, including rectilinear motion, turning motion, gliding motion, and spiral motion. The state refers to motion parameters, including linear velocity, angular velocity, motion radius, etc., and trajectory of the robotic fish. Specifically, for each motion, a pressure variation (PV) model that links motion parameters to PVs surrounding the robotic fish is first built; then, a linear regression analysis method is used for determining the model parameters. Based on the acquired PV model, motion parameters can be estimated by solving the PV model inversely using the PVs measured by the ALLS. Finally, a trajectory estimation method is proposed for estimating trajectory of the robotic fish based on the ALLS-estimated motion parameters. The experimental results show that the robotic fish is able to estimate its trajectory in the aforementioned multiple motions with the aid of ALLS, with small estimation errors.</description><subject>Angular velocity</subject><subject>Artificial lateral line</subject><subject>Estimation</subject><subject>Fish</subject><subject>flow sensing</subject><subject>Gliding</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Pressure sensors</subject><subject>pressure variation (PV)</subject><subject>Regression analysis</subject><subject>Robot sensing systems</subject><subject>robotic fish</subject><subject>Robotics</subject><subject>State estimation</subject><subject>Swimming</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><subject>Underwater robots</subject><subject>Unmanned underwater vehicles</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1rAjEUDKWF2o97oZdAz2tf8rJuchTRtiAIVs8hbrIlors2iRT_fbNVepqB-Xi8IeSJwZAxUK-r5WLIgakhV-UIBV6RAVOCFSBG8jrzsuQFgpK35C7GLQAXCnBA9KLd-dbRz2SSo9OY_N4k37W0a6ihM98W4zods2bpurUu_GQa6LLbdImuo2-_6Dgk3_jamx2d92KPf42nmNz-gdw0Zhfd4wXvyXo2XU3ei_ni7WMynhc1okwFWrT1iJVghd1UFfISpVRlZcBxcLVz3DKh0KCpYIOqNkwKJjmXyiglLeI9eTn3HkL3fXQx6W13DG0-qTnKCioQZZVdcHbVoYsxuEYfQn44nDQD3c-o84y6n1FfZsyR53PEO-f-7QpyHxvhL7TNbRQ</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Zheng, Xingwen</creator><creator>Wang, Wei</creator><creator>Xiong, Minglei</creator><creator>Xie, Guangming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4993-1896</orcidid><orcidid>https://orcid.org/0000-0003-4023-2845</orcidid><orcidid>https://orcid.org/0000-0001-6504-0087</orcidid></search><sort><creationdate>202004</creationdate><title>Online State Estimation of a Fin-Actuated Underwater Robot Using Artificial Lateral Line System</title><author>Zheng, Xingwen ; Wang, Wei ; Xiong, Minglei ; Xie, Guangming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-3d3dc6150d4db77325388957a0e20ecee2d1493a3a70b39ca184182289a998d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angular velocity</topic><topic>Artificial lateral line</topic><topic>Estimation</topic><topic>Fish</topic><topic>flow sensing</topic><topic>Gliding</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Pressure sensors</topic><topic>pressure variation (PV)</topic><topic>Regression analysis</topic><topic>Robot sensing systems</topic><topic>robotic fish</topic><topic>Robotics</topic><topic>State estimation</topic><topic>Swimming</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><topic>Underwater robots</topic><topic>Unmanned underwater vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xingwen</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Xiong, Minglei</creatorcontrib><creatorcontrib>Xie, Guangming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Xingwen</au><au>Wang, Wei</au><au>Xiong, Minglei</au><au>Xie, Guangming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online State Estimation of a Fin-Actuated Underwater Robot Using Artificial Lateral Line System</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2020-04</date><risdate>2020</risdate><volume>36</volume><issue>2</issue><spage>472</spage><epage>487</epage><pages>472-487</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>A lateral line system is a flow-responsive organ system, with which fish can effectively sense the surrounding flow field, thus serving functions in flow-aided fish behaviors. Inspired by such a biological characteristic, artificial lateral line systems (ALLSs) have been developed for promoting technological innovations of underwater robots. In this article, we focus on investigating state estimation of a freely swimming robotic fish in multiple motions, including rectilinear motion, turning motion, gliding motion, and spiral motion. The state refers to motion parameters, including linear velocity, angular velocity, motion radius, etc., and trajectory of the robotic fish. Specifically, for each motion, a pressure variation (PV) model that links motion parameters to PVs surrounding the robotic fish is first built; then, a linear regression analysis method is used for determining the model parameters. Based on the acquired PV model, motion parameters can be estimated by solving the PV model inversely using the PVs measured by the ALLS. Finally, a trajectory estimation method is proposed for estimating trajectory of the robotic fish based on the ALLS-estimated motion parameters. The experimental results show that the robotic fish is able to estimate its trajectory in the aforementioned multiple motions with the aid of ALLS, with small estimation errors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2019.2956343</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4993-1896</orcidid><orcidid>https://orcid.org/0000-0003-4023-2845</orcidid><orcidid>https://orcid.org/0000-0001-6504-0087</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2020-04, Vol.36 (2), p.472-487 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_ieee_primary_9004516 |
source | IEEE Electronic Library (IEL) |
subjects | Angular velocity Artificial lateral line Estimation Fish flow sensing Gliding Mathematical models Parameter estimation Pressure sensors pressure variation (PV) Regression analysis Robot sensing systems robotic fish Robotics State estimation Swimming Trajectory Trajectory analysis Underwater robots Unmanned underwater vehicles |
title | Online State Estimation of a Fin-Actuated Underwater Robot Using Artificial Lateral Line System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20State%20Estimation%20of%20a%20Fin-Actuated%20Underwater%20Robot%20Using%20Artificial%20Lateral%20Line%20System&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Zheng,%20Xingwen&rft.date=2020-04&rft.volume=36&rft.issue=2&rft.spage=472&rft.epage=487&rft.pages=472-487&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2019.2956343&rft_dat=%3Cproquest_RIE%3E2387070457%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387070457&rft_id=info:pmid/&rft_ieee_id=9004516&rfr_iscdi=true |