Experimental Evaluations of TDD-Based Massive MIMO Deployment for Mobile Network Operators

Massive Multiple Input Multiple Output (MIMO) is an essential component for future wireless cellular networks. One of its biggest advantages is to use the 5G spectrum more intelligently by extending both coverage (via high gain adaptive beamforming) and capacity (via high order spatial multiplexing)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.33202-33214
Hauptverfasser: Zeydan, Engin, Dedeoglu, Omer, Turk, Yekta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33214
container_issue
container_start_page 33202
container_title IEEE access
container_volume 8
creator Zeydan, Engin
Dedeoglu, Omer
Turk, Yekta
description Massive Multiple Input Multiple Output (MIMO) is an essential component for future wireless cellular networks. One of its biggest advantages is to use the 5G spectrum more intelligently by extending both coverage (via high gain adaptive beamforming) and capacity (via high order spatial multiplexing). In this paper, we evaluate the performance of Time-division duplex (TDD)-based massive MIMO deployment scenario in one of the commercial sites in Turkey. Our experimental results reveal three major contributions: (i) TDD-based massive MIMO in 10 Mhz reveals up to 212% and 50% higher cell throughput compared to Frequency-division duplex (FDD)-based MIMO deployments with 10 Mhz and 20 Mhz respectively. The Downlink (DL) throughput is also observed to be better in mid/far points. (ii) Together with the usage of TDD-based massive MIMO inside the same commercial site, median values of total cell traffic, Uplink (UL) Spectral Efficiency (SE) and DL schedule Transmission Time Interval (TTI) duty cycle have improved 38%, 9% and 14.5% compared to FDD-based MIMO scenario respectively. (iii) Finally, we address some of the challenges of the massive MIMO deployments and the possible trade-offs that can be observed in terms of Radio Resource Control (RRC)-connected User Equipments (UEs), cell throughput, available Sounding Reference Signal (SRS) resources and pairing opportunities provided by massive MIMO.
doi_str_mv 10.1109/ACCESS.2020.2974277
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9000609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9000609</ieee_id><doaj_id>oai_doaj_org_article_bc2c48bfd6524750a7a870c0bfa26cb5</doaj_id><sourcerecordid>2454872361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d4e8a932f88ce1639a9c6d1d2d61ece49cefb574f47b8e70914819cea51311ec3</originalsourceid><addsrcrecordid>eNpNkUtPGzEUhUeolUCUX8DGUteT-jV-LGmS0kiELKAbNtYdzzWadBqn9oTHv6_TQQhvrnV0zrGvvqq6ZHTGGLXfrubz5d3djFNOZ9xqybU-qc44U7YWjVCfPtxPq4uct7QcU6RGn1UPy5c9pv4P7kYYyPIJhgOMfdxlEgO5Xyzq75CxI2vIuX9Csl6tN2SB-yG-HiMkxETWse0HJLc4Psf0m2xKH4wx5S_V5wBDxou3eV79-rG8n_-sbzbXq_nVTe0lNWPdSTRgBQ_GeGRKWLBedazjnWLoUVqPoW20DFK3BjW1TBpWRGiYYMUhzqvV1NtF2Lp9WQbSq4vQu_9CTI8O0tj7AV3ruZemDZ1quNQNBQ1GU0_bAFz5tildX6eufYp_D5hHt42HtCvfd1w20mguFCsuMbl8ijknDO-vMuqOTNzExB2ZuDcmJXU5pXpEfE_YAkNRK_4BU_2Hug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454872361</pqid></control><display><type>article</type><title>Experimental Evaluations of TDD-Based Massive MIMO Deployment for Mobile Network Operators</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zeydan, Engin ; Dedeoglu, Omer ; Turk, Yekta</creator><creatorcontrib>Zeydan, Engin ; Dedeoglu, Omer ; Turk, Yekta</creatorcontrib><description>Massive Multiple Input Multiple Output (MIMO) is an essential component for future wireless cellular networks. One of its biggest advantages is to use the 5G spectrum more intelligently by extending both coverage (via high gain adaptive beamforming) and capacity (via high order spatial multiplexing). In this paper, we evaluate the performance of Time-division duplex (TDD)-based massive MIMO deployment scenario in one of the commercial sites in Turkey. Our experimental results reveal three major contributions: (i) TDD-based massive MIMO in 10 Mhz reveals up to 212% and 50% higher cell throughput compared to Frequency-division duplex (FDD)-based MIMO deployments with 10 Mhz and 20 Mhz respectively. The Downlink (DL) throughput is also observed to be better in mid/far points. (ii) Together with the usage of TDD-based massive MIMO inside the same commercial site, median values of total cell traffic, Uplink (UL) Spectral Efficiency (SE) and DL schedule Transmission Time Interval (TTI) duty cycle have improved 38%, 9% and 14.5% compared to FDD-based MIMO scenario respectively. (iii) Finally, we address some of the challenges of the massive MIMO deployments and the possible trade-offs that can be observed in terms of Radio Resource Control (RRC)-connected User Equipments (UEs), cell throughput, available Sounding Reference Signal (SRS) resources and pairing opportunities provided by massive MIMO.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2974277</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; Antennas ; Bandwidth ; Beamforming ; Cellular communication ; Channel estimation ; Experiments ; FDD ; Frequency division duplexing ; High gain ; Long Term Evolution ; Massive MIMO ; measurements ; MIMO communication ; Orthogonal Frequency Division Multiplexing ; Performance evaluation ; real-world testbed ; Schedules ; TDD ; Wireless networks</subject><ispartof>IEEE access, 2020, Vol.8, p.33202-33214</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d4e8a932f88ce1639a9c6d1d2d61ece49cefb574f47b8e70914819cea51311ec3</citedby><cites>FETCH-LOGICAL-c408t-d4e8a932f88ce1639a9c6d1d2d61ece49cefb574f47b8e70914819cea51311ec3</cites><orcidid>0000-0002-6651-3736 ; 0000-0003-3329-0588 ; 0000-0002-8727-3188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9000609$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zeydan, Engin</creatorcontrib><creatorcontrib>Dedeoglu, Omer</creatorcontrib><creatorcontrib>Turk, Yekta</creatorcontrib><title>Experimental Evaluations of TDD-Based Massive MIMO Deployment for Mobile Network Operators</title><title>IEEE access</title><addtitle>Access</addtitle><description>Massive Multiple Input Multiple Output (MIMO) is an essential component for future wireless cellular networks. One of its biggest advantages is to use the 5G spectrum more intelligently by extending both coverage (via high gain adaptive beamforming) and capacity (via high order spatial multiplexing). In this paper, we evaluate the performance of Time-division duplex (TDD)-based massive MIMO deployment scenario in one of the commercial sites in Turkey. Our experimental results reveal three major contributions: (i) TDD-based massive MIMO in 10 Mhz reveals up to 212% and 50% higher cell throughput compared to Frequency-division duplex (FDD)-based MIMO deployments with 10 Mhz and 20 Mhz respectively. The Downlink (DL) throughput is also observed to be better in mid/far points. (ii) Together with the usage of TDD-based massive MIMO inside the same commercial site, median values of total cell traffic, Uplink (UL) Spectral Efficiency (SE) and DL schedule Transmission Time Interval (TTI) duty cycle have improved 38%, 9% and 14.5% compared to FDD-based MIMO scenario respectively. (iii) Finally, we address some of the challenges of the massive MIMO deployments and the possible trade-offs that can be observed in terms of Radio Resource Control (RRC)-connected User Equipments (UEs), cell throughput, available Sounding Reference Signal (SRS) resources and pairing opportunities provided by massive MIMO.</description><subject>5G mobile communication</subject><subject>Antennas</subject><subject>Bandwidth</subject><subject>Beamforming</subject><subject>Cellular communication</subject><subject>Channel estimation</subject><subject>Experiments</subject><subject>FDD</subject><subject>Frequency division duplexing</subject><subject>High gain</subject><subject>Long Term Evolution</subject><subject>Massive MIMO</subject><subject>measurements</subject><subject>MIMO communication</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Performance evaluation</subject><subject>real-world testbed</subject><subject>Schedules</subject><subject>TDD</subject><subject>Wireless networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtPGzEUhUeolUCUX8DGUteT-jV-LGmS0kiELKAbNtYdzzWadBqn9oTHv6_TQQhvrnV0zrGvvqq6ZHTGGLXfrubz5d3djFNOZ9xqybU-qc44U7YWjVCfPtxPq4uct7QcU6RGn1UPy5c9pv4P7kYYyPIJhgOMfdxlEgO5Xyzq75CxI2vIuX9Csl6tN2SB-yG-HiMkxETWse0HJLc4Psf0m2xKH4wx5S_V5wBDxou3eV79-rG8n_-sbzbXq_nVTe0lNWPdSTRgBQ_GeGRKWLBedazjnWLoUVqPoW20DFK3BjW1TBpWRGiYYMUhzqvV1NtF2Lp9WQbSq4vQu_9CTI8O0tj7AV3ruZemDZ1quNQNBQ1GU0_bAFz5tildX6eufYp_D5hHt42HtCvfd1w20mguFCsuMbl8ijknDO-vMuqOTNzExB2ZuDcmJXU5pXpEfE_YAkNRK_4BU_2Hug</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zeydan, Engin</creator><creator>Dedeoglu, Omer</creator><creator>Turk, Yekta</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6651-3736</orcidid><orcidid>https://orcid.org/0000-0003-3329-0588</orcidid><orcidid>https://orcid.org/0000-0002-8727-3188</orcidid></search><sort><creationdate>2020</creationdate><title>Experimental Evaluations of TDD-Based Massive MIMO Deployment for Mobile Network Operators</title><author>Zeydan, Engin ; Dedeoglu, Omer ; Turk, Yekta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d4e8a932f88ce1639a9c6d1d2d61ece49cefb574f47b8e70914819cea51311ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>5G mobile communication</topic><topic>Antennas</topic><topic>Bandwidth</topic><topic>Beamforming</topic><topic>Cellular communication</topic><topic>Channel estimation</topic><topic>Experiments</topic><topic>FDD</topic><topic>Frequency division duplexing</topic><topic>High gain</topic><topic>Long Term Evolution</topic><topic>Massive MIMO</topic><topic>measurements</topic><topic>MIMO communication</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Performance evaluation</topic><topic>real-world testbed</topic><topic>Schedules</topic><topic>TDD</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeydan, Engin</creatorcontrib><creatorcontrib>Dedeoglu, Omer</creatorcontrib><creatorcontrib>Turk, Yekta</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeydan, Engin</au><au>Dedeoglu, Omer</au><au>Turk, Yekta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Evaluations of TDD-Based Massive MIMO Deployment for Mobile Network Operators</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>33202</spage><epage>33214</epage><pages>33202-33214</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Massive Multiple Input Multiple Output (MIMO) is an essential component for future wireless cellular networks. One of its biggest advantages is to use the 5G spectrum more intelligently by extending both coverage (via high gain adaptive beamforming) and capacity (via high order spatial multiplexing). In this paper, we evaluate the performance of Time-division duplex (TDD)-based massive MIMO deployment scenario in one of the commercial sites in Turkey. Our experimental results reveal three major contributions: (i) TDD-based massive MIMO in 10 Mhz reveals up to 212% and 50% higher cell throughput compared to Frequency-division duplex (FDD)-based MIMO deployments with 10 Mhz and 20 Mhz respectively. The Downlink (DL) throughput is also observed to be better in mid/far points. (ii) Together with the usage of TDD-based massive MIMO inside the same commercial site, median values of total cell traffic, Uplink (UL) Spectral Efficiency (SE) and DL schedule Transmission Time Interval (TTI) duty cycle have improved 38%, 9% and 14.5% compared to FDD-based MIMO scenario respectively. (iii) Finally, we address some of the challenges of the massive MIMO deployments and the possible trade-offs that can be observed in terms of Radio Resource Control (RRC)-connected User Equipments (UEs), cell throughput, available Sounding Reference Signal (SRS) resources and pairing opportunities provided by massive MIMO.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2974277</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6651-3736</orcidid><orcidid>https://orcid.org/0000-0003-3329-0588</orcidid><orcidid>https://orcid.org/0000-0002-8727-3188</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.33202-33214
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9000609
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 5G mobile communication
Antennas
Bandwidth
Beamforming
Cellular communication
Channel estimation
Experiments
FDD
Frequency division duplexing
High gain
Long Term Evolution
Massive MIMO
measurements
MIMO communication
Orthogonal Frequency Division Multiplexing
Performance evaluation
real-world testbed
Schedules
TDD
Wireless networks
title Experimental Evaluations of TDD-Based Massive MIMO Deployment for Mobile Network Operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A24%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Evaluations%20of%20TDD-Based%20Massive%20MIMO%20Deployment%20for%20Mobile%20Network%20Operators&rft.jtitle=IEEE%20access&rft.au=Zeydan,%20Engin&rft.date=2020&rft.volume=8&rft.spage=33202&rft.epage=33214&rft.pages=33202-33214&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2974277&rft_dat=%3Cproquest_ieee_%3E2454872361%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454872361&rft_id=info:pmid/&rft_ieee_id=9000609&rft_doaj_id=oai_doaj_org_article_bc2c48bfd6524750a7a870c0bfa26cb5&rfr_iscdi=true