Experimental Evaluations of TDD-Based Massive MIMO Deployment for Mobile Network Operators
Massive Multiple Input Multiple Output (MIMO) is an essential component for future wireless cellular networks. One of its biggest advantages is to use the 5G spectrum more intelligently by extending both coverage (via high gain adaptive beamforming) and capacity (via high order spatial multiplexing)...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.33202-33214 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33214 |
---|---|
container_issue | |
container_start_page | 33202 |
container_title | IEEE access |
container_volume | 8 |
creator | Zeydan, Engin Dedeoglu, Omer Turk, Yekta |
description | Massive Multiple Input Multiple Output (MIMO) is an essential component for future wireless cellular networks. One of its biggest advantages is to use the 5G spectrum more intelligently by extending both coverage (via high gain adaptive beamforming) and capacity (via high order spatial multiplexing). In this paper, we evaluate the performance of Time-division duplex (TDD)-based massive MIMO deployment scenario in one of the commercial sites in Turkey. Our experimental results reveal three major contributions: (i) TDD-based massive MIMO in 10 Mhz reveals up to 212% and 50% higher cell throughput compared to Frequency-division duplex (FDD)-based MIMO deployments with 10 Mhz and 20 Mhz respectively. The Downlink (DL) throughput is also observed to be better in mid/far points. (ii) Together with the usage of TDD-based massive MIMO inside the same commercial site, median values of total cell traffic, Uplink (UL) Spectral Efficiency (SE) and DL schedule Transmission Time Interval (TTI) duty cycle have improved 38%, 9% and 14.5% compared to FDD-based MIMO scenario respectively. (iii) Finally, we address some of the challenges of the massive MIMO deployments and the possible trade-offs that can be observed in terms of Radio Resource Control (RRC)-connected User Equipments (UEs), cell throughput, available Sounding Reference Signal (SRS) resources and pairing opportunities provided by massive MIMO. |
doi_str_mv | 10.1109/ACCESS.2020.2974277 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9000609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9000609</ieee_id><doaj_id>oai_doaj_org_article_bc2c48bfd6524750a7a870c0bfa26cb5</doaj_id><sourcerecordid>2454872361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d4e8a932f88ce1639a9c6d1d2d61ece49cefb574f47b8e70914819cea51311ec3</originalsourceid><addsrcrecordid>eNpNkUtPGzEUhUeolUCUX8DGUteT-jV-LGmS0kiELKAbNtYdzzWadBqn9oTHv6_TQQhvrnV0zrGvvqq6ZHTGGLXfrubz5d3djFNOZ9xqybU-qc44U7YWjVCfPtxPq4uct7QcU6RGn1UPy5c9pv4P7kYYyPIJhgOMfdxlEgO5Xyzq75CxI2vIuX9Csl6tN2SB-yG-HiMkxETWse0HJLc4Psf0m2xKH4wx5S_V5wBDxou3eV79-rG8n_-sbzbXq_nVTe0lNWPdSTRgBQ_GeGRKWLBedazjnWLoUVqPoW20DFK3BjW1TBpWRGiYYMUhzqvV1NtF2Lp9WQbSq4vQu_9CTI8O0tj7AV3ruZemDZ1quNQNBQ1GU0_bAFz5tildX6eufYp_D5hHt42HtCvfd1w20mguFCsuMbl8ijknDO-vMuqOTNzExB2ZuDcmJXU5pXpEfE_YAkNRK_4BU_2Hug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454872361</pqid></control><display><type>article</type><title>Experimental Evaluations of TDD-Based Massive MIMO Deployment for Mobile Network Operators</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zeydan, Engin ; Dedeoglu, Omer ; Turk, Yekta</creator><creatorcontrib>Zeydan, Engin ; Dedeoglu, Omer ; Turk, Yekta</creatorcontrib><description>Massive Multiple Input Multiple Output (MIMO) is an essential component for future wireless cellular networks. One of its biggest advantages is to use the 5G spectrum more intelligently by extending both coverage (via high gain adaptive beamforming) and capacity (via high order spatial multiplexing). In this paper, we evaluate the performance of Time-division duplex (TDD)-based massive MIMO deployment scenario in one of the commercial sites in Turkey. Our experimental results reveal three major contributions: (i) TDD-based massive MIMO in 10 Mhz reveals up to 212% and 50% higher cell throughput compared to Frequency-division duplex (FDD)-based MIMO deployments with 10 Mhz and 20 Mhz respectively. The Downlink (DL) throughput is also observed to be better in mid/far points. (ii) Together with the usage of TDD-based massive MIMO inside the same commercial site, median values of total cell traffic, Uplink (UL) Spectral Efficiency (SE) and DL schedule Transmission Time Interval (TTI) duty cycle have improved 38%, 9% and 14.5% compared to FDD-based MIMO scenario respectively. (iii) Finally, we address some of the challenges of the massive MIMO deployments and the possible trade-offs that can be observed in terms of Radio Resource Control (RRC)-connected User Equipments (UEs), cell throughput, available Sounding Reference Signal (SRS) resources and pairing opportunities provided by massive MIMO.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2974277</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; Antennas ; Bandwidth ; Beamforming ; Cellular communication ; Channel estimation ; Experiments ; FDD ; Frequency division duplexing ; High gain ; Long Term Evolution ; Massive MIMO ; measurements ; MIMO communication ; Orthogonal Frequency Division Multiplexing ; Performance evaluation ; real-world testbed ; Schedules ; TDD ; Wireless networks</subject><ispartof>IEEE access, 2020, Vol.8, p.33202-33214</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d4e8a932f88ce1639a9c6d1d2d61ece49cefb574f47b8e70914819cea51311ec3</citedby><cites>FETCH-LOGICAL-c408t-d4e8a932f88ce1639a9c6d1d2d61ece49cefb574f47b8e70914819cea51311ec3</cites><orcidid>0000-0002-6651-3736 ; 0000-0003-3329-0588 ; 0000-0002-8727-3188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9000609$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zeydan, Engin</creatorcontrib><creatorcontrib>Dedeoglu, Omer</creatorcontrib><creatorcontrib>Turk, Yekta</creatorcontrib><title>Experimental Evaluations of TDD-Based Massive MIMO Deployment for Mobile Network Operators</title><title>IEEE access</title><addtitle>Access</addtitle><description>Massive Multiple Input Multiple Output (MIMO) is an essential component for future wireless cellular networks. One of its biggest advantages is to use the 5G spectrum more intelligently by extending both coverage (via high gain adaptive beamforming) and capacity (via high order spatial multiplexing). In this paper, we evaluate the performance of Time-division duplex (TDD)-based massive MIMO deployment scenario in one of the commercial sites in Turkey. Our experimental results reveal three major contributions: (i) TDD-based massive MIMO in 10 Mhz reveals up to 212% and 50% higher cell throughput compared to Frequency-division duplex (FDD)-based MIMO deployments with 10 Mhz and 20 Mhz respectively. The Downlink (DL) throughput is also observed to be better in mid/far points. (ii) Together with the usage of TDD-based massive MIMO inside the same commercial site, median values of total cell traffic, Uplink (UL) Spectral Efficiency (SE) and DL schedule Transmission Time Interval (TTI) duty cycle have improved 38%, 9% and 14.5% compared to FDD-based MIMO scenario respectively. (iii) Finally, we address some of the challenges of the massive MIMO deployments and the possible trade-offs that can be observed in terms of Radio Resource Control (RRC)-connected User Equipments (UEs), cell throughput, available Sounding Reference Signal (SRS) resources and pairing opportunities provided by massive MIMO.</description><subject>5G mobile communication</subject><subject>Antennas</subject><subject>Bandwidth</subject><subject>Beamforming</subject><subject>Cellular communication</subject><subject>Channel estimation</subject><subject>Experiments</subject><subject>FDD</subject><subject>Frequency division duplexing</subject><subject>High gain</subject><subject>Long Term Evolution</subject><subject>Massive MIMO</subject><subject>measurements</subject><subject>MIMO communication</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Performance evaluation</subject><subject>real-world testbed</subject><subject>Schedules</subject><subject>TDD</subject><subject>Wireless networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtPGzEUhUeolUCUX8DGUteT-jV-LGmS0kiELKAbNtYdzzWadBqn9oTHv6_TQQhvrnV0zrGvvqq6ZHTGGLXfrubz5d3djFNOZ9xqybU-qc44U7YWjVCfPtxPq4uct7QcU6RGn1UPy5c9pv4P7kYYyPIJhgOMfdxlEgO5Xyzq75CxI2vIuX9Csl6tN2SB-yG-HiMkxETWse0HJLc4Psf0m2xKH4wx5S_V5wBDxou3eV79-rG8n_-sbzbXq_nVTe0lNWPdSTRgBQ_GeGRKWLBedazjnWLoUVqPoW20DFK3BjW1TBpWRGiYYMUhzqvV1NtF2Lp9WQbSq4vQu_9CTI8O0tj7AV3ruZemDZ1quNQNBQ1GU0_bAFz5tildX6eufYp_D5hHt42HtCvfd1w20mguFCsuMbl8ijknDO-vMuqOTNzExB2ZuDcmJXU5pXpEfE_YAkNRK_4BU_2Hug</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zeydan, Engin</creator><creator>Dedeoglu, Omer</creator><creator>Turk, Yekta</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6651-3736</orcidid><orcidid>https://orcid.org/0000-0003-3329-0588</orcidid><orcidid>https://orcid.org/0000-0002-8727-3188</orcidid></search><sort><creationdate>2020</creationdate><title>Experimental Evaluations of TDD-Based Massive MIMO Deployment for Mobile Network Operators</title><author>Zeydan, Engin ; Dedeoglu, Omer ; Turk, Yekta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d4e8a932f88ce1639a9c6d1d2d61ece49cefb574f47b8e70914819cea51311ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>5G mobile communication</topic><topic>Antennas</topic><topic>Bandwidth</topic><topic>Beamforming</topic><topic>Cellular communication</topic><topic>Channel estimation</topic><topic>Experiments</topic><topic>FDD</topic><topic>Frequency division duplexing</topic><topic>High gain</topic><topic>Long Term Evolution</topic><topic>Massive MIMO</topic><topic>measurements</topic><topic>MIMO communication</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Performance evaluation</topic><topic>real-world testbed</topic><topic>Schedules</topic><topic>TDD</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeydan, Engin</creatorcontrib><creatorcontrib>Dedeoglu, Omer</creatorcontrib><creatorcontrib>Turk, Yekta</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeydan, Engin</au><au>Dedeoglu, Omer</au><au>Turk, Yekta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Evaluations of TDD-Based Massive MIMO Deployment for Mobile Network Operators</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>33202</spage><epage>33214</epage><pages>33202-33214</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Massive Multiple Input Multiple Output (MIMO) is an essential component for future wireless cellular networks. One of its biggest advantages is to use the 5G spectrum more intelligently by extending both coverage (via high gain adaptive beamforming) and capacity (via high order spatial multiplexing). In this paper, we evaluate the performance of Time-division duplex (TDD)-based massive MIMO deployment scenario in one of the commercial sites in Turkey. Our experimental results reveal three major contributions: (i) TDD-based massive MIMO in 10 Mhz reveals up to 212% and 50% higher cell throughput compared to Frequency-division duplex (FDD)-based MIMO deployments with 10 Mhz and 20 Mhz respectively. The Downlink (DL) throughput is also observed to be better in mid/far points. (ii) Together with the usage of TDD-based massive MIMO inside the same commercial site, median values of total cell traffic, Uplink (UL) Spectral Efficiency (SE) and DL schedule Transmission Time Interval (TTI) duty cycle have improved 38%, 9% and 14.5% compared to FDD-based MIMO scenario respectively. (iii) Finally, we address some of the challenges of the massive MIMO deployments and the possible trade-offs that can be observed in terms of Radio Resource Control (RRC)-connected User Equipments (UEs), cell throughput, available Sounding Reference Signal (SRS) resources and pairing opportunities provided by massive MIMO.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2974277</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6651-3736</orcidid><orcidid>https://orcid.org/0000-0003-3329-0588</orcidid><orcidid>https://orcid.org/0000-0002-8727-3188</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.33202-33214 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9000609 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 5G mobile communication Antennas Bandwidth Beamforming Cellular communication Channel estimation Experiments FDD Frequency division duplexing High gain Long Term Evolution Massive MIMO measurements MIMO communication Orthogonal Frequency Division Multiplexing Performance evaluation real-world testbed Schedules TDD Wireless networks |
title | Experimental Evaluations of TDD-Based Massive MIMO Deployment for Mobile Network Operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A24%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Evaluations%20of%20TDD-Based%20Massive%20MIMO%20Deployment%20for%20Mobile%20Network%20Operators&rft.jtitle=IEEE%20access&rft.au=Zeydan,%20Engin&rft.date=2020&rft.volume=8&rft.spage=33202&rft.epage=33214&rft.pages=33202-33214&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2974277&rft_dat=%3Cproquest_ieee_%3E2454872361%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454872361&rft_id=info:pmid/&rft_ieee_id=9000609&rft_doaj_id=oai_doaj_org_article_bc2c48bfd6524750a7a870c0bfa26cb5&rfr_iscdi=true |