Cyclic Connectivity Index of Fuzzy Graphs

A parameter is a numerical or other measurable factor whose values characterize a system. Connectivity parameters have indispensable role in the analysis of connectivity of networks. Strength of a cycle in an unweighted graph is always one. But, in a fuzzy graph, strengths of cycles may vary even fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2021-06, Vol.29 (6), p.1340-1349
Hauptverfasser: Binu, M., Mathew, Sunil, Mordeson, John N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1349
container_issue 6
container_start_page 1340
container_title IEEE transactions on fuzzy systems
container_volume 29
creator Binu, M.
Mathew, Sunil
Mordeson, John N.
description A parameter is a numerical or other measurable factor whose values characterize a system. Connectivity parameters have indispensable role in the analysis of connectivity of networks. Strength of a cycle in an unweighted graph is always one. But, in a fuzzy graph, strengths of cycles may vary even for a given pair of vertices. Cyclic reachability is a property that determines the overall connectedness of a network. This article introduces two connectivity parameters namely, cyclic connectivity index (CCI) and average CCI (ACCI) of fuzzy graphs, which can be used to represent the cyclic reachability. CCI of fuzzy graph theoretic structures, such as trees, blocks, \theta-fuzzy graphs, and complete fuzzy graphs, are discussed. Vertices of a fuzzy graph are classified into three categories in terms of ACCI and their characterizations are obtained. Three algorithms are proposed. One of them is to help find CCI and ACCI of a given fuzzy graph. Another helps to identify the nature of vertices and the third to enhance the existing ACCI of a fuzzy graph. Also, future directions in the study of CCI and ACCI are proposed.
doi_str_mv 10.1109/TFUZZ.2020.2973941
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8998342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8998342</ieee_id><sourcerecordid>2536030635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-a30a3e517a0dcf2c147a98ab83373c22333caa9dafd1c0a1ebace13ec156249a3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFb_gF4CnjykzuzkY_cowdRCwUt76WWZbjaYUpOaTcX015va4umdw_vMMI8Q9wgTRNDPi3y5Wk0kSJhInZKO8EKMcIgQgKLLYYaEwiSF5FrceL8BwChGNRJPWW-3lQ2ypq6d7arvquuDWV24n6Apg3x_OPTBtOXdh78VVyVvvbs751gs89dF9hbO36ez7GUeWlKqC5mAycWYMhS2lBajlLXitSJKyUpJRJZZF1wWaIHRrdk6JGcxTmSkmcbi8bR31zZfe-c7s2n2bT2cNDKmBGj4JB5a8tSybeN960qza6tPbnuDYI5KzJ8Sc1RizkoG6OEEVc65f0BprSiS9AtA6lxY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536030635</pqid></control><display><type>article</type><title>Cyclic Connectivity Index of Fuzzy Graphs</title><source>IEEE Electronic Library (IEL)</source><creator>Binu, M. ; Mathew, Sunil ; Mordeson, John N.</creator><creatorcontrib>Binu, M. ; Mathew, Sunil ; Mordeson, John N.</creatorcontrib><description>A parameter is a numerical or other measurable factor whose values characterize a system. Connectivity parameters have indispensable role in the analysis of connectivity of networks. Strength of a cycle in an unweighted graph is always one. But, in a fuzzy graph, strengths of cycles may vary even for a given pair of vertices. Cyclic reachability is a property that determines the overall connectedness of a network. This article introduces two connectivity parameters namely, cyclic connectivity index (CCI) and average CCI (ACCI) of fuzzy graphs, which can be used to represent the cyclic reachability. CCI of fuzzy graph theoretic structures, such as trees, blocks, &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\theta&lt;/tex-math&gt;&lt;/inline-formula&gt;-fuzzy graphs, and complete fuzzy graphs, are discussed. Vertices of a fuzzy graph are classified into three categories in terms of ACCI and their characterizations are obtained. Three algorithms are proposed. One of them is to help find CCI and ACCI of a given fuzzy graph. Another helps to identify the nature of vertices and the third to enhance the existing ACCI of a fuzzy graph. Also, future directions in the study of CCI and ACCI are proposed.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2020.2973941</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Apexes ; Block ; Bridges ; Connectivity ; cyclic connectivity index (CCI) ; fuzzy graph ; Graph theory ; Graphs ; Heuristic algorithms ; Indexes ; networking ; Numerical models ; Parameters ; Quality of service ; Trees (mathematics)</subject><ispartof>IEEE transactions on fuzzy systems, 2021-06, Vol.29 (6), p.1340-1349</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-a30a3e517a0dcf2c147a98ab83373c22333caa9dafd1c0a1ebace13ec156249a3</citedby><cites>FETCH-LOGICAL-c388t-a30a3e517a0dcf2c147a98ab83373c22333caa9dafd1c0a1ebace13ec156249a3</cites><orcidid>0000-0001-8478-9245 ; 0000-0002-4133-3560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8998342$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8998342$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Binu, M.</creatorcontrib><creatorcontrib>Mathew, Sunil</creatorcontrib><creatorcontrib>Mordeson, John N.</creatorcontrib><title>Cyclic Connectivity Index of Fuzzy Graphs</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>A parameter is a numerical or other measurable factor whose values characterize a system. Connectivity parameters have indispensable role in the analysis of connectivity of networks. Strength of a cycle in an unweighted graph is always one. But, in a fuzzy graph, strengths of cycles may vary even for a given pair of vertices. Cyclic reachability is a property that determines the overall connectedness of a network. This article introduces two connectivity parameters namely, cyclic connectivity index (CCI) and average CCI (ACCI) of fuzzy graphs, which can be used to represent the cyclic reachability. CCI of fuzzy graph theoretic structures, such as trees, blocks, &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\theta&lt;/tex-math&gt;&lt;/inline-formula&gt;-fuzzy graphs, and complete fuzzy graphs, are discussed. Vertices of a fuzzy graph are classified into three categories in terms of ACCI and their characterizations are obtained. Three algorithms are proposed. One of them is to help find CCI and ACCI of a given fuzzy graph. Another helps to identify the nature of vertices and the third to enhance the existing ACCI of a fuzzy graph. Also, future directions in the study of CCI and ACCI are proposed.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>Block</subject><subject>Bridges</subject><subject>Connectivity</subject><subject>cyclic connectivity index (CCI)</subject><subject>fuzzy graph</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Heuristic algorithms</subject><subject>Indexes</subject><subject>networking</subject><subject>Numerical models</subject><subject>Parameters</subject><subject>Quality of service</subject><subject>Trees (mathematics)</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFb_gF4CnjykzuzkY_cowdRCwUt76WWZbjaYUpOaTcX015va4umdw_vMMI8Q9wgTRNDPi3y5Wk0kSJhInZKO8EKMcIgQgKLLYYaEwiSF5FrceL8BwChGNRJPWW-3lQ2ypq6d7arvquuDWV24n6Apg3x_OPTBtOXdh78VVyVvvbs751gs89dF9hbO36ez7GUeWlKqC5mAycWYMhS2lBajlLXitSJKyUpJRJZZF1wWaIHRrdk6JGcxTmSkmcbi8bR31zZfe-c7s2n2bT2cNDKmBGj4JB5a8tSybeN960qza6tPbnuDYI5KzJ8Sc1RizkoG6OEEVc65f0BprSiS9AtA6lxY</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Binu, M.</creator><creator>Mathew, Sunil</creator><creator>Mordeson, John N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8478-9245</orcidid><orcidid>https://orcid.org/0000-0002-4133-3560</orcidid></search><sort><creationdate>20210601</creationdate><title>Cyclic Connectivity Index of Fuzzy Graphs</title><author>Binu, M. ; Mathew, Sunil ; Mordeson, John N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-a30a3e517a0dcf2c147a98ab83373c22333caa9dafd1c0a1ebace13ec156249a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Block</topic><topic>Bridges</topic><topic>Connectivity</topic><topic>cyclic connectivity index (CCI)</topic><topic>fuzzy graph</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Heuristic algorithms</topic><topic>Indexes</topic><topic>networking</topic><topic>Numerical models</topic><topic>Parameters</topic><topic>Quality of service</topic><topic>Trees (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binu, M.</creatorcontrib><creatorcontrib>Mathew, Sunil</creatorcontrib><creatorcontrib>Mordeson, John N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Binu, M.</au><au>Mathew, Sunil</au><au>Mordeson, John N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclic Connectivity Index of Fuzzy Graphs</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>29</volume><issue>6</issue><spage>1340</spage><epage>1349</epage><pages>1340-1349</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>A parameter is a numerical or other measurable factor whose values characterize a system. Connectivity parameters have indispensable role in the analysis of connectivity of networks. Strength of a cycle in an unweighted graph is always one. But, in a fuzzy graph, strengths of cycles may vary even for a given pair of vertices. Cyclic reachability is a property that determines the overall connectedness of a network. This article introduces two connectivity parameters namely, cyclic connectivity index (CCI) and average CCI (ACCI) of fuzzy graphs, which can be used to represent the cyclic reachability. CCI of fuzzy graph theoretic structures, such as trees, blocks, &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\theta&lt;/tex-math&gt;&lt;/inline-formula&gt;-fuzzy graphs, and complete fuzzy graphs, are discussed. Vertices of a fuzzy graph are classified into three categories in terms of ACCI and their characterizations are obtained. Three algorithms are proposed. One of them is to help find CCI and ACCI of a given fuzzy graph. Another helps to identify the nature of vertices and the third to enhance the existing ACCI of a fuzzy graph. Also, future directions in the study of CCI and ACCI are proposed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2020.2973941</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8478-9245</orcidid><orcidid>https://orcid.org/0000-0002-4133-3560</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2021-06, Vol.29 (6), p.1340-1349
issn 1063-6706
1941-0034
language eng
recordid cdi_ieee_primary_8998342
source IEEE Electronic Library (IEL)
subjects Algorithms
Apexes
Block
Bridges
Connectivity
cyclic connectivity index (CCI)
fuzzy graph
Graph theory
Graphs
Heuristic algorithms
Indexes
networking
Numerical models
Parameters
Quality of service
Trees (mathematics)
title Cyclic Connectivity Index of Fuzzy Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclic%20Connectivity%20Index%20of%20Fuzzy%20Graphs&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Binu,%20M.&rft.date=2021-06-01&rft.volume=29&rft.issue=6&rft.spage=1340&rft.epage=1349&rft.pages=1340-1349&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2020.2973941&rft_dat=%3Cproquest_RIE%3E2536030635%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536030635&rft_id=info:pmid/&rft_ieee_id=8998342&rfr_iscdi=true