High-Capacity Coherent DCIs Using Pol-Muxed Carrier and LO-Less Receiver
Commonly used 4-level pulse amplitude modulation (PAM-4) scheme limits the amount of data traffic that can be handled by the PAM-4 based data center interconnects (DCIs). Coherent links can support much higher data rates, albeit with a higher complexity of the receiver and much higher power consumpt...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2020-07, Vol.38 (13), p.3461-3468 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3468 |
---|---|
container_issue | 13 |
container_start_page | 3461 |
container_title | Journal of lightwave technology |
container_volume | 38 |
creator | Kamran, Rashmi Naaz, Sana Goyal, Sandeep Gupta, Shalabh |
description | Commonly used 4-level pulse amplitude modulation (PAM-4) scheme limits the amount of data traffic that can be handled by the PAM-4 based data center interconnects (DCIs). Coherent links can support much higher data rates, albeit with a higher complexity of the receiver and much higher power consumption of the system. As a compromise solution, we suggest the use of a polarization multiplexed carrier based self-homodyne (PMC-SH) system for DCIs, which can support higher data rates with power consumption comparable to that of a PAM-4 system. Implementation of this scheme has been impeded earlier by the requirement of polarization control for proper separation of the carrier and the modulated signal at the receiver end. The proposed PMC-SH link with adaptive polarization control is a practical solution that facilitates a local oscillator (LO)-less and carrier phase recovery (CPR)-free coherent receiver. Simulation results successfully validate the proposed system for a 200 Gbps (50 Gbaud) PMC-SH 16-ary quadrature amplitude modulation (16-QAM) link. We also experimentally demonstrate a 32 Gbaud (128 Gb/s) PMC-SH 16-QAM link for a standard single-mode fiber channel. Furthermore, we analytically show that the PMC-SH scheme results in a significantly better bit-error-rate for a given transmission bit-rate or can double the data rate for a given bandwidth of electronics (when compared with the PAM-4 system). |
doi_str_mv | 10.1109/JLT.2020.2972913 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8989998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8989998</ieee_id><sourcerecordid>2424546018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8b60823581ff07d02752be302f16c4ba1d13dd07016ba45df05a263fac767d213</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExG9m3jZxPPi7Ee726OpH2BqMAbOm213CiXY4i4Y-feWQDzN5XnfmXkIueUw4hyyh7diNhIgYCQyLTIuz8iAJ4lhQnB5TgagpWRGC3VJrmJcAXCljB6Q8bhZLFnuNq5qtnuad0sM2G7pUz6JdB6bdkE_ujV73_2ip7kLocFAXetpMWUFxkg_scLmB8M1uajdOuLNaQ7J_OV5lo9ZMX2d5I8Fq_qrtsyUKRghE8PrGrQHoRNRogRR87RSpeOeS-9BA09LpxJfQ-JEKmtX6VT7_pchuT_2bkL3vcO4tatuF9p-pRVKqESlwE1PwZGqQhdjwNpuQvPlwt5ysAdftvdlD77syVcfuTtGGkT8x01msiwz8g9uJWPO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424546018</pqid></control><display><type>article</type><title>High-Capacity Coherent DCIs Using Pol-Muxed Carrier and LO-Less Receiver</title><source>IEEE Electronic Library (IEL)</source><creator>Kamran, Rashmi ; Naaz, Sana ; Goyal, Sandeep ; Gupta, Shalabh</creator><creatorcontrib>Kamran, Rashmi ; Naaz, Sana ; Goyal, Sandeep ; Gupta, Shalabh</creatorcontrib><description>Commonly used 4-level pulse amplitude modulation (PAM-4) scheme limits the amount of data traffic that can be handled by the PAM-4 based data center interconnects (DCIs). Coherent links can support much higher data rates, albeit with a higher complexity of the receiver and much higher power consumption of the system. As a compromise solution, we suggest the use of a polarization multiplexed carrier based self-homodyne (PMC-SH) system for DCIs, which can support higher data rates with power consumption comparable to that of a PAM-4 system. Implementation of this scheme has been impeded earlier by the requirement of polarization control for proper separation of the carrier and the modulated signal at the receiver end. The proposed PMC-SH link with adaptive polarization control is a practical solution that facilitates a local oscillator (LO)-less and carrier phase recovery (CPR)-free coherent receiver. Simulation results successfully validate the proposed system for a 200 Gbps (50 Gbaud) PMC-SH 16-ary quadrature amplitude modulation (16-QAM) link. We also experimentally demonstrate a 32 Gbaud (128 Gb/s) PMC-SH 16-QAM link for a standard single-mode fiber channel. Furthermore, we analytically show that the PMC-SH scheme results in a significantly better bit-error-rate for a given transmission bit-rate or can double the data rate for a given bandwidth of electronics (when compared with the PAM-4 system).</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2020.2972913</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Adaptive polarization control ; Bandwidths ; Coherence ; Computer networks ; data center interconnects ; Data centers ; Dispersion ; High-speed optical techniques ; Optical polarization ; Optical transmitters ; Photodetectors ; Polarization ; polarization multiplexed carrier ; Power consumption ; Pulse amplitude modulation ; Quadrature amplitude modulation ; Receivers ; self-homodyne link</subject><ispartof>Journal of lightwave technology, 2020-07, Vol.38 (13), p.3461-3468</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8b60823581ff07d02752be302f16c4ba1d13dd07016ba45df05a263fac767d213</citedby><cites>FETCH-LOGICAL-c291t-8b60823581ff07d02752be302f16c4ba1d13dd07016ba45df05a263fac767d213</cites><orcidid>0000-0003-0679-7631 ; 0000-0001-5988-9420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8989998$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8989998$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kamran, Rashmi</creatorcontrib><creatorcontrib>Naaz, Sana</creatorcontrib><creatorcontrib>Goyal, Sandeep</creatorcontrib><creatorcontrib>Gupta, Shalabh</creatorcontrib><title>High-Capacity Coherent DCIs Using Pol-Muxed Carrier and LO-Less Receiver</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Commonly used 4-level pulse amplitude modulation (PAM-4) scheme limits the amount of data traffic that can be handled by the PAM-4 based data center interconnects (DCIs). Coherent links can support much higher data rates, albeit with a higher complexity of the receiver and much higher power consumption of the system. As a compromise solution, we suggest the use of a polarization multiplexed carrier based self-homodyne (PMC-SH) system for DCIs, which can support higher data rates with power consumption comparable to that of a PAM-4 system. Implementation of this scheme has been impeded earlier by the requirement of polarization control for proper separation of the carrier and the modulated signal at the receiver end. The proposed PMC-SH link with adaptive polarization control is a practical solution that facilitates a local oscillator (LO)-less and carrier phase recovery (CPR)-free coherent receiver. Simulation results successfully validate the proposed system for a 200 Gbps (50 Gbaud) PMC-SH 16-ary quadrature amplitude modulation (16-QAM) link. We also experimentally demonstrate a 32 Gbaud (128 Gb/s) PMC-SH 16-QAM link for a standard single-mode fiber channel. Furthermore, we analytically show that the PMC-SH scheme results in a significantly better bit-error-rate for a given transmission bit-rate or can double the data rate for a given bandwidth of electronics (when compared with the PAM-4 system).</description><subject>Adaptive control</subject><subject>Adaptive polarization control</subject><subject>Bandwidths</subject><subject>Coherence</subject><subject>Computer networks</subject><subject>data center interconnects</subject><subject>Data centers</subject><subject>Dispersion</subject><subject>High-speed optical techniques</subject><subject>Optical polarization</subject><subject>Optical transmitters</subject><subject>Photodetectors</subject><subject>Polarization</subject><subject>polarization multiplexed carrier</subject><subject>Power consumption</subject><subject>Pulse amplitude modulation</subject><subject>Quadrature amplitude modulation</subject><subject>Receivers</subject><subject>self-homodyne link</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGExG9m3jZxPPi7Ee726OpH2BqMAbOm213CiXY4i4Y-feWQDzN5XnfmXkIueUw4hyyh7diNhIgYCQyLTIuz8iAJ4lhQnB5TgagpWRGC3VJrmJcAXCljB6Q8bhZLFnuNq5qtnuad0sM2G7pUz6JdB6bdkE_ujV73_2ip7kLocFAXetpMWUFxkg_scLmB8M1uajdOuLNaQ7J_OV5lo9ZMX2d5I8Fq_qrtsyUKRghE8PrGrQHoRNRogRR87RSpeOeS-9BA09LpxJfQ-JEKmtX6VT7_pchuT_2bkL3vcO4tatuF9p-pRVKqESlwE1PwZGqQhdjwNpuQvPlwt5ysAdftvdlD77syVcfuTtGGkT8x01msiwz8g9uJWPO</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Kamran, Rashmi</creator><creator>Naaz, Sana</creator><creator>Goyal, Sandeep</creator><creator>Gupta, Shalabh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0679-7631</orcidid><orcidid>https://orcid.org/0000-0001-5988-9420</orcidid></search><sort><creationdate>20200701</creationdate><title>High-Capacity Coherent DCIs Using Pol-Muxed Carrier and LO-Less Receiver</title><author>Kamran, Rashmi ; Naaz, Sana ; Goyal, Sandeep ; Gupta, Shalabh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8b60823581ff07d02752be302f16c4ba1d13dd07016ba45df05a263fac767d213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Adaptive polarization control</topic><topic>Bandwidths</topic><topic>Coherence</topic><topic>Computer networks</topic><topic>data center interconnects</topic><topic>Data centers</topic><topic>Dispersion</topic><topic>High-speed optical techniques</topic><topic>Optical polarization</topic><topic>Optical transmitters</topic><topic>Photodetectors</topic><topic>Polarization</topic><topic>polarization multiplexed carrier</topic><topic>Power consumption</topic><topic>Pulse amplitude modulation</topic><topic>Quadrature amplitude modulation</topic><topic>Receivers</topic><topic>self-homodyne link</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamran, Rashmi</creatorcontrib><creatorcontrib>Naaz, Sana</creatorcontrib><creatorcontrib>Goyal, Sandeep</creatorcontrib><creatorcontrib>Gupta, Shalabh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kamran, Rashmi</au><au>Naaz, Sana</au><au>Goyal, Sandeep</au><au>Gupta, Shalabh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Capacity Coherent DCIs Using Pol-Muxed Carrier and LO-Less Receiver</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>38</volume><issue>13</issue><spage>3461</spage><epage>3468</epage><pages>3461-3468</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Commonly used 4-level pulse amplitude modulation (PAM-4) scheme limits the amount of data traffic that can be handled by the PAM-4 based data center interconnects (DCIs). Coherent links can support much higher data rates, albeit with a higher complexity of the receiver and much higher power consumption of the system. As a compromise solution, we suggest the use of a polarization multiplexed carrier based self-homodyne (PMC-SH) system for DCIs, which can support higher data rates with power consumption comparable to that of a PAM-4 system. Implementation of this scheme has been impeded earlier by the requirement of polarization control for proper separation of the carrier and the modulated signal at the receiver end. The proposed PMC-SH link with adaptive polarization control is a practical solution that facilitates a local oscillator (LO)-less and carrier phase recovery (CPR)-free coherent receiver. Simulation results successfully validate the proposed system for a 200 Gbps (50 Gbaud) PMC-SH 16-ary quadrature amplitude modulation (16-QAM) link. We also experimentally demonstrate a 32 Gbaud (128 Gb/s) PMC-SH 16-QAM link for a standard single-mode fiber channel. Furthermore, we analytically show that the PMC-SH scheme results in a significantly better bit-error-rate for a given transmission bit-rate or can double the data rate for a given bandwidth of electronics (when compared with the PAM-4 system).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2020.2972913</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0679-7631</orcidid><orcidid>https://orcid.org/0000-0001-5988-9420</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2020-07, Vol.38 (13), p.3461-3468 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_8989998 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Adaptive polarization control Bandwidths Coherence Computer networks data center interconnects Data centers Dispersion High-speed optical techniques Optical polarization Optical transmitters Photodetectors Polarization polarization multiplexed carrier Power consumption Pulse amplitude modulation Quadrature amplitude modulation Receivers self-homodyne link |
title | High-Capacity Coherent DCIs Using Pol-Muxed Carrier and LO-Less Receiver |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Capacity%20Coherent%20DCIs%20Using%20Pol-Muxed%20Carrier%20and%20LO-Less%20Receiver&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Kamran,%20Rashmi&rft.date=2020-07-01&rft.volume=38&rft.issue=13&rft.spage=3461&rft.epage=3468&rft.pages=3461-3468&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2020.2972913&rft_dat=%3Cproquest_RIE%3E2424546018%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424546018&rft_id=info:pmid/&rft_ieee_id=8989998&rfr_iscdi=true |