Novel closed-form Green's function in shielded planar layered media
A new method is proposed for the construction of closed-form Green's function in planar, stratified media between two conducting planes. The new approach does not require the a priori extraction of the guided-wave poles and the quasi-static part from the Green function spectrum. The proposed me...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2000-12, Vol.48 (12), p.2225-2232 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2232 |
---|---|
container_issue | 12 |
container_start_page | 2225 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 48 |
creator | Cangellaris, A.C. Okhmatovski, V.I. |
description | A new method is proposed for the construction of closed-form Green's function in planar, stratified media between two conducting planes. The new approach does not require the a priori extraction of the guided-wave poles and the quasi-static part from the Green function spectrum. The proposed methodology can be easily applied to arbitrary planar media without any restriction on the number of layers and their thickness. Based on the discrete solution of one-dimensional ordinary differential equations for the spectral-domain expressions of the appropriate vector potential components, the proposed method leads to the simultaneous extraction of all Green's function values associated with a given set of source and observation points. Krylov subspace model order reduction is used to express the generated closed-form Green's function representation in terms of a finite sum involving a small number of Hankel functions. The validity of the proposed methodology and the accuracy of the generated closed-form Green's functions are demonstrated through a series of numerical experiments involving both vertical and horizontal dipoles. |
doi_str_mv | 10.1109/22.898968 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_898968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>898968</ieee_id><sourcerecordid>27627054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-4a28f1b06ee279b0f1eca49694762389f6dd82eb123d971695adf86d1615bc9f3</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuAgCtaPg1dPiweLh61JNp9HKVqFohc9h-xmglu2m5p0hf57I1s8eNDTMMzDMMOL0AXBM0KwvqV0prTSQh2gCeFcllpIfIgmGBNVaqbwMTpJaZVbxrGaoPlz-ISuaLqQwJU-xHWxiAD9NBV-6JttG_qi7Yv03kLnwBWbzvY2Fp3dQcztGlxrz9CRt12C8309RW8P96_zx3L5snia3y3LphJyWzJLlSc1FgBU6hp7Ao1lWmgmBa2U9sI5RaEmtHJaEqG5dV4JRwThdaN9dYqm495NDB8DpK1Zt6mBLp8EYUhGEyYqLTHJ8vpPSRWTSkr9P8ynScxZhle_4CoMsc_vGqU4kRXBPKObETUxpBTBm01s1zbuDMHmOx5DqRnjyfZytC0A_Lj98Aul2Igp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885173105</pqid></control><display><type>article</type><title>Novel closed-form Green's function in shielded planar layered media</title><source>IEEE Xplore</source><creator>Cangellaris, A.C. ; Okhmatovski, V.I.</creator><creatorcontrib>Cangellaris, A.C. ; Okhmatovski, V.I.</creatorcontrib><description>A new method is proposed for the construction of closed-form Green's function in planar, stratified media between two conducting planes. The new approach does not require the a priori extraction of the guided-wave poles and the quasi-static part from the Green function spectrum. The proposed methodology can be easily applied to arbitrary planar media without any restriction on the number of layers and their thickness. Based on the discrete solution of one-dimensional ordinary differential equations for the spectral-domain expressions of the appropriate vector potential components, the proposed method leads to the simultaneous extraction of all Green's function values associated with a given set of source and observation points. Krylov subspace model order reduction is used to express the generated closed-form Green's function representation in terms of a finite sum involving a small number of Hankel functions. The validity of the proposed methodology and the accuracy of the generated closed-form Green's functions are demonstrated through a series of numerical experiments involving both vertical and horizontal dipoles.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/22.898968</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational efficiency ; Differential equations ; Dipole antennas ; Discrete transforms ; Electromagnetic analysis ; Exact solutions ; Extraction ; Green function ; Green's function methods ; Green's functions ; Interpolation ; Mathematical analysis ; Mathematical functions ; Mathematical models ; Media ; Methodology ; Microwave propagation ; Nonhomogeneous media ; Ordinary differential equations ; Studies</subject><ispartof>IEEE transactions on microwave theory and techniques, 2000-12, Vol.48 (12), p.2225-2232</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-4a28f1b06ee279b0f1eca49694762389f6dd82eb123d971695adf86d1615bc9f3</citedby><cites>FETCH-LOGICAL-c367t-4a28f1b06ee279b0f1eca49694762389f6dd82eb123d971695adf86d1615bc9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/898968$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/898968$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cangellaris, A.C.</creatorcontrib><creatorcontrib>Okhmatovski, V.I.</creatorcontrib><title>Novel closed-form Green's function in shielded planar layered media</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>A new method is proposed for the construction of closed-form Green's function in planar, stratified media between two conducting planes. The new approach does not require the a priori extraction of the guided-wave poles and the quasi-static part from the Green function spectrum. The proposed methodology can be easily applied to arbitrary planar media without any restriction on the number of layers and their thickness. Based on the discrete solution of one-dimensional ordinary differential equations for the spectral-domain expressions of the appropriate vector potential components, the proposed method leads to the simultaneous extraction of all Green's function values associated with a given set of source and observation points. Krylov subspace model order reduction is used to express the generated closed-form Green's function representation in terms of a finite sum involving a small number of Hankel functions. The validity of the proposed methodology and the accuracy of the generated closed-form Green's functions are demonstrated through a series of numerical experiments involving both vertical and horizontal dipoles.</description><subject>Computational efficiency</subject><subject>Differential equations</subject><subject>Dipole antennas</subject><subject>Discrete transforms</subject><subject>Electromagnetic analysis</subject><subject>Exact solutions</subject><subject>Extraction</subject><subject>Green function</subject><subject>Green's function methods</subject><subject>Green's functions</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Media</subject><subject>Methodology</subject><subject>Microwave propagation</subject><subject>Nonhomogeneous media</subject><subject>Ordinary differential equations</subject><subject>Studies</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U1LAzEQBuAgCtaPg1dPiweLh61JNp9HKVqFohc9h-xmglu2m5p0hf57I1s8eNDTMMzDMMOL0AXBM0KwvqV0prTSQh2gCeFcllpIfIgmGBNVaqbwMTpJaZVbxrGaoPlz-ISuaLqQwJU-xHWxiAD9NBV-6JttG_qi7Yv03kLnwBWbzvY2Fp3dQcztGlxrz9CRt12C8309RW8P96_zx3L5snia3y3LphJyWzJLlSc1FgBU6hp7Ao1lWmgmBa2U9sI5RaEmtHJaEqG5dV4JRwThdaN9dYqm495NDB8DpK1Zt6mBLp8EYUhGEyYqLTHJ8vpPSRWTSkr9P8ynScxZhle_4CoMsc_vGqU4kRXBPKObETUxpBTBm01s1zbuDMHmOx5DqRnjyfZytC0A_Lj98Aul2Igp</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>Cangellaris, A.C.</creator><creator>Okhmatovski, V.I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20001201</creationdate><title>Novel closed-form Green's function in shielded planar layered media</title><author>Cangellaris, A.C. ; Okhmatovski, V.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-4a28f1b06ee279b0f1eca49694762389f6dd82eb123d971695adf86d1615bc9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Computational efficiency</topic><topic>Differential equations</topic><topic>Dipole antennas</topic><topic>Discrete transforms</topic><topic>Electromagnetic analysis</topic><topic>Exact solutions</topic><topic>Extraction</topic><topic>Green function</topic><topic>Green's function methods</topic><topic>Green's functions</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Media</topic><topic>Methodology</topic><topic>Microwave propagation</topic><topic>Nonhomogeneous media</topic><topic>Ordinary differential equations</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cangellaris, A.C.</creatorcontrib><creatorcontrib>Okhmatovski, V.I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cangellaris, A.C.</au><au>Okhmatovski, V.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel closed-form Green's function in shielded planar layered media</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2000-12-01</date><risdate>2000</risdate><volume>48</volume><issue>12</issue><spage>2225</spage><epage>2232</epage><pages>2225-2232</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>A new method is proposed for the construction of closed-form Green's function in planar, stratified media between two conducting planes. The new approach does not require the a priori extraction of the guided-wave poles and the quasi-static part from the Green function spectrum. The proposed methodology can be easily applied to arbitrary planar media without any restriction on the number of layers and their thickness. Based on the discrete solution of one-dimensional ordinary differential equations for the spectral-domain expressions of the appropriate vector potential components, the proposed method leads to the simultaneous extraction of all Green's function values associated with a given set of source and observation points. Krylov subspace model order reduction is used to express the generated closed-form Green's function representation in terms of a finite sum involving a small number of Hankel functions. The validity of the proposed methodology and the accuracy of the generated closed-form Green's functions are demonstrated through a series of numerical experiments involving both vertical and horizontal dipoles.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/22.898968</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2000-12, Vol.48 (12), p.2225-2232 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_ieee_primary_898968 |
source | IEEE Xplore |
subjects | Computational efficiency Differential equations Dipole antennas Discrete transforms Electromagnetic analysis Exact solutions Extraction Green function Green's function methods Green's functions Interpolation Mathematical analysis Mathematical functions Mathematical models Media Methodology Microwave propagation Nonhomogeneous media Ordinary differential equations Studies |
title | Novel closed-form Green's function in shielded planar layered media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20closed-form%20Green's%20function%20in%20shielded%20planar%20layered%20media&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Cangellaris,%20A.C.&rft.date=2000-12-01&rft.volume=48&rft.issue=12&rft.spage=2225&rft.epage=2232&rft.pages=2225-2232&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/22.898968&rft_dat=%3Cproquest_RIE%3E27627054%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885173105&rft_id=info:pmid/&rft_ieee_id=898968&rfr_iscdi=true |