Structured Sparsity Model Based Trajectory Tracking Using Private Location Data Release
Mobile devices have been an integral part of our everyday lives. Users' increasing interaction with mobile devices brings in significant concerns on various types of potential privacy leakage, among which location privacy draws the most attention. Specifically, mobile users' trajectories c...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on dependable and secure computing 2021-11, Vol.18 (6), p.2983-2995 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2995 |
---|---|
container_issue | 6 |
container_start_page | 2983 |
container_title | IEEE transactions on dependable and secure computing |
container_volume | 18 |
creator | Shao, Minglai Li, Jianxin Yan, Qiben Chen, Feng Huang, Hongyi Chen, Xunxun |
description | Mobile devices have been an integral part of our everyday lives. Users' increasing interaction with mobile devices brings in significant concerns on various types of potential privacy leakage, among which location privacy draws the most attention. Specifically, mobile users' trajectories constructed by location data may be captured by adversaries to infer sensitive information. In previous studies, differential privacy has been utilized to protect published trajectory data with rigorous privacy guarantee. Strong protection provided by differential privacy distorts the original locations or trajectories using stochastic noise to avoid privacy leakage. In this article, we propose a novel location inference attack framework, iTracker, which simultaneously recovers multiple trajectories from differentially private trajectory data using the structured sparsity model. Compared with the traditional recovery methods based on single trajectory prediction, iTracker, which takes advantage of the correlation among trajectories discovered by the structured sparsity model, is more effective in recovering multiple private trajectories simultaneously. iTracker successfully attacks the existing privacy protection mechanisms based on differential privacy. We theoretically demonstrate the near-linear runtime of iTracker, and the experimental results using two real-world datasets show that iTracker outperforms existing recovery algorithms in recovering multiple trajectories. |
doi_str_mv | 10.1109/TDSC.2020.2972334 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8986753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8986753</ieee_id><sourcerecordid>2595718500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-503f242915d98bd5a9cae42067c18c8608c4b3f232a46cbfaf97480438b97f233</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKd_gPgS8Lnz5qtNHnXzCyaK2_AxpGkqnXOtSSrsvzdlw5d7D4dz7oUfQpcEJoSAulnOFtMJBQoTqgrKGD9CI6I4yQCIPE5acJEJVZBTdBbCGoByqfgIfSyi723svavwojM-NHGHX9rKbfCdCclcerN2NrZ-N0j71Ww_8SoM8803vyY6PG-tiU27xTMTDX53G5eK5-ikNpvgLg57jFYP98vpUzZ_fXye3s4zSxWLmQBWU04VEZWSZSWMssZxCnlhibQyB2l5mSKMGp7bsja1KrgEzmSpimSzMbre3-18-9O7EPW67f02vdRUKFEQKQBSiuxT1rcheFfrzjffxu80AT3w0wM_PfDTB36pc7XvNM65_7xUMi8EY385QGtp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595718500</pqid></control><display><type>article</type><title>Structured Sparsity Model Based Trajectory Tracking Using Private Location Data Release</title><source>IEEE Electronic Library (IEL)</source><creator>Shao, Minglai ; Li, Jianxin ; Yan, Qiben ; Chen, Feng ; Huang, Hongyi ; Chen, Xunxun</creator><creatorcontrib>Shao, Minglai ; Li, Jianxin ; Yan, Qiben ; Chen, Feng ; Huang, Hongyi ; Chen, Xunxun</creatorcontrib><description>Mobile devices have been an integral part of our everyday lives. Users' increasing interaction with mobile devices brings in significant concerns on various types of potential privacy leakage, among which location privacy draws the most attention. Specifically, mobile users' trajectories constructed by location data may be captured by adversaries to infer sensitive information. In previous studies, differential privacy has been utilized to protect published trajectory data with rigorous privacy guarantee. Strong protection provided by differential privacy distorts the original locations or trajectories using stochastic noise to avoid privacy leakage. In this article, we propose a novel location inference attack framework, iTracker, which simultaneously recovers multiple trajectories from differentially private trajectory data using the structured sparsity model. Compared with the traditional recovery methods based on single trajectory prediction, iTracker, which takes advantage of the correlation among trajectories discovered by the structured sparsity model, is more effective in recovering multiple private trajectories simultaneously. iTracker successfully attacks the existing privacy protection mechanisms based on differential privacy. We theoretically demonstrate the near-linear runtime of iTracker, and the experimental results using two real-world datasets show that iTracker outperforms existing recovery algorithms in recovering multiple trajectories.</description><identifier>ISSN: 1545-5971</identifier><identifier>EISSN: 1941-0018</identifier><identifier>DOI: 10.1109/TDSC.2020.2972334</identifier><identifier>CODEN: ITDSCM</identifier><language>eng</language><publisher>Washington: IEEE</publisher><subject>Algorithms ; Data models ; Differential privacy ; Electronic devices ; Hidden Markov models ; Leakage ; Location privacy ; multiple trajectory recovery ; Privacy ; Sparsity ; structured sparsity model ; Trajectory</subject><ispartof>IEEE transactions on dependable and secure computing, 2021-11, Vol.18 (6), p.2983-2995</ispartof><rights>Copyright IEEE Computer Society 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-503f242915d98bd5a9cae42067c18c8608c4b3f232a46cbfaf97480438b97f233</citedby><cites>FETCH-LOGICAL-c293t-503f242915d98bd5a9cae42067c18c8608c4b3f232a46cbfaf97480438b97f233</cites><orcidid>0000-0001-5152-0055 ; 0000-0001-6590-384X ; 0000-0002-9481-4819 ; 0000-0002-2826-6236 ; 0000-0003-0551-2163 ; 0000-0002-4508-5963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8986753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8986753$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shao, Minglai</creatorcontrib><creatorcontrib>Li, Jianxin</creatorcontrib><creatorcontrib>Yan, Qiben</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Huang, Hongyi</creatorcontrib><creatorcontrib>Chen, Xunxun</creatorcontrib><title>Structured Sparsity Model Based Trajectory Tracking Using Private Location Data Release</title><title>IEEE transactions on dependable and secure computing</title><addtitle>TDSC</addtitle><description>Mobile devices have been an integral part of our everyday lives. Users' increasing interaction with mobile devices brings in significant concerns on various types of potential privacy leakage, among which location privacy draws the most attention. Specifically, mobile users' trajectories constructed by location data may be captured by adversaries to infer sensitive information. In previous studies, differential privacy has been utilized to protect published trajectory data with rigorous privacy guarantee. Strong protection provided by differential privacy distorts the original locations or trajectories using stochastic noise to avoid privacy leakage. In this article, we propose a novel location inference attack framework, iTracker, which simultaneously recovers multiple trajectories from differentially private trajectory data using the structured sparsity model. Compared with the traditional recovery methods based on single trajectory prediction, iTracker, which takes advantage of the correlation among trajectories discovered by the structured sparsity model, is more effective in recovering multiple private trajectories simultaneously. iTracker successfully attacks the existing privacy protection mechanisms based on differential privacy. We theoretically demonstrate the near-linear runtime of iTracker, and the experimental results using two real-world datasets show that iTracker outperforms existing recovery algorithms in recovering multiple trajectories.</description><subject>Algorithms</subject><subject>Data models</subject><subject>Differential privacy</subject><subject>Electronic devices</subject><subject>Hidden Markov models</subject><subject>Leakage</subject><subject>Location privacy</subject><subject>multiple trajectory recovery</subject><subject>Privacy</subject><subject>Sparsity</subject><subject>structured sparsity model</subject><subject>Trajectory</subject><issn>1545-5971</issn><issn>1941-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOKd_gPgS8Lnz5qtNHnXzCyaK2_AxpGkqnXOtSSrsvzdlw5d7D4dz7oUfQpcEJoSAulnOFtMJBQoTqgrKGD9CI6I4yQCIPE5acJEJVZBTdBbCGoByqfgIfSyi723svavwojM-NHGHX9rKbfCdCclcerN2NrZ-N0j71Ww_8SoM8803vyY6PG-tiU27xTMTDX53G5eK5-ikNpvgLg57jFYP98vpUzZ_fXye3s4zSxWLmQBWU04VEZWSZSWMssZxCnlhibQyB2l5mSKMGp7bsja1KrgEzmSpimSzMbre3-18-9O7EPW67f02vdRUKFEQKQBSiuxT1rcheFfrzjffxu80AT3w0wM_PfDTB36pc7XvNM65_7xUMi8EY385QGtp</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Shao, Minglai</creator><creator>Li, Jianxin</creator><creator>Yan, Qiben</creator><creator>Chen, Feng</creator><creator>Huang, Hongyi</creator><creator>Chen, Xunxun</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-5152-0055</orcidid><orcidid>https://orcid.org/0000-0001-6590-384X</orcidid><orcidid>https://orcid.org/0000-0002-9481-4819</orcidid><orcidid>https://orcid.org/0000-0002-2826-6236</orcidid><orcidid>https://orcid.org/0000-0003-0551-2163</orcidid><orcidid>https://orcid.org/0000-0002-4508-5963</orcidid></search><sort><creationdate>20211101</creationdate><title>Structured Sparsity Model Based Trajectory Tracking Using Private Location Data Release</title><author>Shao, Minglai ; Li, Jianxin ; Yan, Qiben ; Chen, Feng ; Huang, Hongyi ; Chen, Xunxun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-503f242915d98bd5a9cae42067c18c8608c4b3f232a46cbfaf97480438b97f233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Data models</topic><topic>Differential privacy</topic><topic>Electronic devices</topic><topic>Hidden Markov models</topic><topic>Leakage</topic><topic>Location privacy</topic><topic>multiple trajectory recovery</topic><topic>Privacy</topic><topic>Sparsity</topic><topic>structured sparsity model</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Shao, Minglai</creatorcontrib><creatorcontrib>Li, Jianxin</creatorcontrib><creatorcontrib>Yan, Qiben</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Huang, Hongyi</creatorcontrib><creatorcontrib>Chen, Xunxun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IEEE transactions on dependable and secure computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shao, Minglai</au><au>Li, Jianxin</au><au>Yan, Qiben</au><au>Chen, Feng</au><au>Huang, Hongyi</au><au>Chen, Xunxun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structured Sparsity Model Based Trajectory Tracking Using Private Location Data Release</atitle><jtitle>IEEE transactions on dependable and secure computing</jtitle><stitle>TDSC</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>18</volume><issue>6</issue><spage>2983</spage><epage>2995</epage><pages>2983-2995</pages><issn>1545-5971</issn><eissn>1941-0018</eissn><coden>ITDSCM</coden><abstract>Mobile devices have been an integral part of our everyday lives. Users' increasing interaction with mobile devices brings in significant concerns on various types of potential privacy leakage, among which location privacy draws the most attention. Specifically, mobile users' trajectories constructed by location data may be captured by adversaries to infer sensitive information. In previous studies, differential privacy has been utilized to protect published trajectory data with rigorous privacy guarantee. Strong protection provided by differential privacy distorts the original locations or trajectories using stochastic noise to avoid privacy leakage. In this article, we propose a novel location inference attack framework, iTracker, which simultaneously recovers multiple trajectories from differentially private trajectory data using the structured sparsity model. Compared with the traditional recovery methods based on single trajectory prediction, iTracker, which takes advantage of the correlation among trajectories discovered by the structured sparsity model, is more effective in recovering multiple private trajectories simultaneously. iTracker successfully attacks the existing privacy protection mechanisms based on differential privacy. We theoretically demonstrate the near-linear runtime of iTracker, and the experimental results using two real-world datasets show that iTracker outperforms existing recovery algorithms in recovering multiple trajectories.</abstract><cop>Washington</cop><pub>IEEE</pub><doi>10.1109/TDSC.2020.2972334</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5152-0055</orcidid><orcidid>https://orcid.org/0000-0001-6590-384X</orcidid><orcidid>https://orcid.org/0000-0002-9481-4819</orcidid><orcidid>https://orcid.org/0000-0002-2826-6236</orcidid><orcidid>https://orcid.org/0000-0003-0551-2163</orcidid><orcidid>https://orcid.org/0000-0002-4508-5963</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5971 |
ispartof | IEEE transactions on dependable and secure computing, 2021-11, Vol.18 (6), p.2983-2995 |
issn | 1545-5971 1941-0018 |
language | eng |
recordid | cdi_ieee_primary_8986753 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Data models Differential privacy Electronic devices Hidden Markov models Leakage Location privacy multiple trajectory recovery Privacy Sparsity structured sparsity model Trajectory |
title | Structured Sparsity Model Based Trajectory Tracking Using Private Location Data Release |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structured%20Sparsity%20Model%20Based%20Trajectory%20Tracking%20Using%20Private%20Location%20Data%20Release&rft.jtitle=IEEE%20transactions%20on%20dependable%20and%20secure%20computing&rft.au=Shao,%20Minglai&rft.date=2021-11-01&rft.volume=18&rft.issue=6&rft.spage=2983&rft.epage=2995&rft.pages=2983-2995&rft.issn=1545-5971&rft.eissn=1941-0018&rft.coden=ITDSCM&rft_id=info:doi/10.1109/TDSC.2020.2972334&rft_dat=%3Cproquest_RIE%3E2595718500%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595718500&rft_id=info:pmid/&rft_ieee_id=8986753&rfr_iscdi=true |