Structured Sparsity Model Based Trajectory Tracking Using Private Location Data Release

Mobile devices have been an integral part of our everyday lives. Users' increasing interaction with mobile devices brings in significant concerns on various types of potential privacy leakage, among which location privacy draws the most attention. Specifically, mobile users' trajectories c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on dependable and secure computing 2021-11, Vol.18 (6), p.2983-2995
Hauptverfasser: Shao, Minglai, Li, Jianxin, Yan, Qiben, Chen, Feng, Huang, Hongyi, Chen, Xunxun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2995
container_issue 6
container_start_page 2983
container_title IEEE transactions on dependable and secure computing
container_volume 18
creator Shao, Minglai
Li, Jianxin
Yan, Qiben
Chen, Feng
Huang, Hongyi
Chen, Xunxun
description Mobile devices have been an integral part of our everyday lives. Users' increasing interaction with mobile devices brings in significant concerns on various types of potential privacy leakage, among which location privacy draws the most attention. Specifically, mobile users' trajectories constructed by location data may be captured by adversaries to infer sensitive information. In previous studies, differential privacy has been utilized to protect published trajectory data with rigorous privacy guarantee. Strong protection provided by differential privacy distorts the original locations or trajectories using stochastic noise to avoid privacy leakage. In this article, we propose a novel location inference attack framework, iTracker, which simultaneously recovers multiple trajectories from differentially private trajectory data using the structured sparsity model. Compared with the traditional recovery methods based on single trajectory prediction, iTracker, which takes advantage of the correlation among trajectories discovered by the structured sparsity model, is more effective in recovering multiple private trajectories simultaneously. iTracker successfully attacks the existing privacy protection mechanisms based on differential privacy. We theoretically demonstrate the near-linear runtime of iTracker, and the experimental results using two real-world datasets show that iTracker outperforms existing recovery algorithms in recovering multiple trajectories.
doi_str_mv 10.1109/TDSC.2020.2972334
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8986753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8986753</ieee_id><sourcerecordid>2595718500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-503f242915d98bd5a9cae42067c18c8608c4b3f232a46cbfaf97480438b97f233</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKd_gPgS8Lnz5qtNHnXzCyaK2_AxpGkqnXOtSSrsvzdlw5d7D4dz7oUfQpcEJoSAulnOFtMJBQoTqgrKGD9CI6I4yQCIPE5acJEJVZBTdBbCGoByqfgIfSyi723svavwojM-NHGHX9rKbfCdCclcerN2NrZ-N0j71Ww_8SoM8803vyY6PG-tiU27xTMTDX53G5eK5-ikNpvgLg57jFYP98vpUzZ_fXye3s4zSxWLmQBWU04VEZWSZSWMssZxCnlhibQyB2l5mSKMGp7bsja1KrgEzmSpimSzMbre3-18-9O7EPW67f02vdRUKFEQKQBSiuxT1rcheFfrzjffxu80AT3w0wM_PfDTB36pc7XvNM65_7xUMi8EY385QGtp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595718500</pqid></control><display><type>article</type><title>Structured Sparsity Model Based Trajectory Tracking Using Private Location Data Release</title><source>IEEE Electronic Library (IEL)</source><creator>Shao, Minglai ; Li, Jianxin ; Yan, Qiben ; Chen, Feng ; Huang, Hongyi ; Chen, Xunxun</creator><creatorcontrib>Shao, Minglai ; Li, Jianxin ; Yan, Qiben ; Chen, Feng ; Huang, Hongyi ; Chen, Xunxun</creatorcontrib><description>Mobile devices have been an integral part of our everyday lives. Users' increasing interaction with mobile devices brings in significant concerns on various types of potential privacy leakage, among which location privacy draws the most attention. Specifically, mobile users' trajectories constructed by location data may be captured by adversaries to infer sensitive information. In previous studies, differential privacy has been utilized to protect published trajectory data with rigorous privacy guarantee. Strong protection provided by differential privacy distorts the original locations or trajectories using stochastic noise to avoid privacy leakage. In this article, we propose a novel location inference attack framework, iTracker, which simultaneously recovers multiple trajectories from differentially private trajectory data using the structured sparsity model. Compared with the traditional recovery methods based on single trajectory prediction, iTracker, which takes advantage of the correlation among trajectories discovered by the structured sparsity model, is more effective in recovering multiple private trajectories simultaneously. iTracker successfully attacks the existing privacy protection mechanisms based on differential privacy. We theoretically demonstrate the near-linear runtime of iTracker, and the experimental results using two real-world datasets show that iTracker outperforms existing recovery algorithms in recovering multiple trajectories.</description><identifier>ISSN: 1545-5971</identifier><identifier>EISSN: 1941-0018</identifier><identifier>DOI: 10.1109/TDSC.2020.2972334</identifier><identifier>CODEN: ITDSCM</identifier><language>eng</language><publisher>Washington: IEEE</publisher><subject>Algorithms ; Data models ; Differential privacy ; Electronic devices ; Hidden Markov models ; Leakage ; Location privacy ; multiple trajectory recovery ; Privacy ; Sparsity ; structured sparsity model ; Trajectory</subject><ispartof>IEEE transactions on dependable and secure computing, 2021-11, Vol.18 (6), p.2983-2995</ispartof><rights>Copyright IEEE Computer Society 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-503f242915d98bd5a9cae42067c18c8608c4b3f232a46cbfaf97480438b97f233</citedby><cites>FETCH-LOGICAL-c293t-503f242915d98bd5a9cae42067c18c8608c4b3f232a46cbfaf97480438b97f233</cites><orcidid>0000-0001-5152-0055 ; 0000-0001-6590-384X ; 0000-0002-9481-4819 ; 0000-0002-2826-6236 ; 0000-0003-0551-2163 ; 0000-0002-4508-5963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8986753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8986753$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shao, Minglai</creatorcontrib><creatorcontrib>Li, Jianxin</creatorcontrib><creatorcontrib>Yan, Qiben</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Huang, Hongyi</creatorcontrib><creatorcontrib>Chen, Xunxun</creatorcontrib><title>Structured Sparsity Model Based Trajectory Tracking Using Private Location Data Release</title><title>IEEE transactions on dependable and secure computing</title><addtitle>TDSC</addtitle><description>Mobile devices have been an integral part of our everyday lives. Users' increasing interaction with mobile devices brings in significant concerns on various types of potential privacy leakage, among which location privacy draws the most attention. Specifically, mobile users' trajectories constructed by location data may be captured by adversaries to infer sensitive information. In previous studies, differential privacy has been utilized to protect published trajectory data with rigorous privacy guarantee. Strong protection provided by differential privacy distorts the original locations or trajectories using stochastic noise to avoid privacy leakage. In this article, we propose a novel location inference attack framework, iTracker, which simultaneously recovers multiple trajectories from differentially private trajectory data using the structured sparsity model. Compared with the traditional recovery methods based on single trajectory prediction, iTracker, which takes advantage of the correlation among trajectories discovered by the structured sparsity model, is more effective in recovering multiple private trajectories simultaneously. iTracker successfully attacks the existing privacy protection mechanisms based on differential privacy. We theoretically demonstrate the near-linear runtime of iTracker, and the experimental results using two real-world datasets show that iTracker outperforms existing recovery algorithms in recovering multiple trajectories.</description><subject>Algorithms</subject><subject>Data models</subject><subject>Differential privacy</subject><subject>Electronic devices</subject><subject>Hidden Markov models</subject><subject>Leakage</subject><subject>Location privacy</subject><subject>multiple trajectory recovery</subject><subject>Privacy</subject><subject>Sparsity</subject><subject>structured sparsity model</subject><subject>Trajectory</subject><issn>1545-5971</issn><issn>1941-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOKd_gPgS8Lnz5qtNHnXzCyaK2_AxpGkqnXOtSSrsvzdlw5d7D4dz7oUfQpcEJoSAulnOFtMJBQoTqgrKGD9CI6I4yQCIPE5acJEJVZBTdBbCGoByqfgIfSyi723svavwojM-NHGHX9rKbfCdCclcerN2NrZ-N0j71Ww_8SoM8803vyY6PG-tiU27xTMTDX53G5eK5-ikNpvgLg57jFYP98vpUzZ_fXye3s4zSxWLmQBWU04VEZWSZSWMssZxCnlhibQyB2l5mSKMGp7bsja1KrgEzmSpimSzMbre3-18-9O7EPW67f02vdRUKFEQKQBSiuxT1rcheFfrzjffxu80AT3w0wM_PfDTB36pc7XvNM65_7xUMi8EY385QGtp</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Shao, Minglai</creator><creator>Li, Jianxin</creator><creator>Yan, Qiben</creator><creator>Chen, Feng</creator><creator>Huang, Hongyi</creator><creator>Chen, Xunxun</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-5152-0055</orcidid><orcidid>https://orcid.org/0000-0001-6590-384X</orcidid><orcidid>https://orcid.org/0000-0002-9481-4819</orcidid><orcidid>https://orcid.org/0000-0002-2826-6236</orcidid><orcidid>https://orcid.org/0000-0003-0551-2163</orcidid><orcidid>https://orcid.org/0000-0002-4508-5963</orcidid></search><sort><creationdate>20211101</creationdate><title>Structured Sparsity Model Based Trajectory Tracking Using Private Location Data Release</title><author>Shao, Minglai ; Li, Jianxin ; Yan, Qiben ; Chen, Feng ; Huang, Hongyi ; Chen, Xunxun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-503f242915d98bd5a9cae42067c18c8608c4b3f232a46cbfaf97480438b97f233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Data models</topic><topic>Differential privacy</topic><topic>Electronic devices</topic><topic>Hidden Markov models</topic><topic>Leakage</topic><topic>Location privacy</topic><topic>multiple trajectory recovery</topic><topic>Privacy</topic><topic>Sparsity</topic><topic>structured sparsity model</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Shao, Minglai</creatorcontrib><creatorcontrib>Li, Jianxin</creatorcontrib><creatorcontrib>Yan, Qiben</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Huang, Hongyi</creatorcontrib><creatorcontrib>Chen, Xunxun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IEEE transactions on dependable and secure computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shao, Minglai</au><au>Li, Jianxin</au><au>Yan, Qiben</au><au>Chen, Feng</au><au>Huang, Hongyi</au><au>Chen, Xunxun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structured Sparsity Model Based Trajectory Tracking Using Private Location Data Release</atitle><jtitle>IEEE transactions on dependable and secure computing</jtitle><stitle>TDSC</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>18</volume><issue>6</issue><spage>2983</spage><epage>2995</epage><pages>2983-2995</pages><issn>1545-5971</issn><eissn>1941-0018</eissn><coden>ITDSCM</coden><abstract>Mobile devices have been an integral part of our everyday lives. Users' increasing interaction with mobile devices brings in significant concerns on various types of potential privacy leakage, among which location privacy draws the most attention. Specifically, mobile users' trajectories constructed by location data may be captured by adversaries to infer sensitive information. In previous studies, differential privacy has been utilized to protect published trajectory data with rigorous privacy guarantee. Strong protection provided by differential privacy distorts the original locations or trajectories using stochastic noise to avoid privacy leakage. In this article, we propose a novel location inference attack framework, iTracker, which simultaneously recovers multiple trajectories from differentially private trajectory data using the structured sparsity model. Compared with the traditional recovery methods based on single trajectory prediction, iTracker, which takes advantage of the correlation among trajectories discovered by the structured sparsity model, is more effective in recovering multiple private trajectories simultaneously. iTracker successfully attacks the existing privacy protection mechanisms based on differential privacy. We theoretically demonstrate the near-linear runtime of iTracker, and the experimental results using two real-world datasets show that iTracker outperforms existing recovery algorithms in recovering multiple trajectories.</abstract><cop>Washington</cop><pub>IEEE</pub><doi>10.1109/TDSC.2020.2972334</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5152-0055</orcidid><orcidid>https://orcid.org/0000-0001-6590-384X</orcidid><orcidid>https://orcid.org/0000-0002-9481-4819</orcidid><orcidid>https://orcid.org/0000-0002-2826-6236</orcidid><orcidid>https://orcid.org/0000-0003-0551-2163</orcidid><orcidid>https://orcid.org/0000-0002-4508-5963</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5971
ispartof IEEE transactions on dependable and secure computing, 2021-11, Vol.18 (6), p.2983-2995
issn 1545-5971
1941-0018
language eng
recordid cdi_ieee_primary_8986753
source IEEE Electronic Library (IEL)
subjects Algorithms
Data models
Differential privacy
Electronic devices
Hidden Markov models
Leakage
Location privacy
multiple trajectory recovery
Privacy
Sparsity
structured sparsity model
Trajectory
title Structured Sparsity Model Based Trajectory Tracking Using Private Location Data Release
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structured%20Sparsity%20Model%20Based%20Trajectory%20Tracking%20Using%20Private%20Location%20Data%20Release&rft.jtitle=IEEE%20transactions%20on%20dependable%20and%20secure%20computing&rft.au=Shao,%20Minglai&rft.date=2021-11-01&rft.volume=18&rft.issue=6&rft.spage=2983&rft.epage=2995&rft.pages=2983-2995&rft.issn=1545-5971&rft.eissn=1941-0018&rft.coden=ITDSCM&rft_id=info:doi/10.1109/TDSC.2020.2972334&rft_dat=%3Cproquest_RIE%3E2595718500%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595718500&rft_id=info:pmid/&rft_ieee_id=8986753&rfr_iscdi=true