Nonlinear retinal response modeling for future neuromorphic instrumentation
The development of a bio-inspired image sensor that can match the functionality of the vertebrate retina in terms of image resolution, power dissipation and dynamic resolution demands an extremely challenging standard in terms of efficiency and performance [1]-[4]. At present, functional biological...
Gespeichert in:
Veröffentlicht in: | IEEE instrumentation & measurement magazine 2020-02, Vol.23 (1), p.21-29 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29 |
---|---|
container_issue | 1 |
container_start_page | 21 |
container_title | IEEE instrumentation & measurement magazine |
container_volume | 23 |
creator | Eshraghian, Jason K. Baek, Seungbum Levi, Timothee Kohno, Takashi Al-Sarawi, Said Leong, Philip H. W. Cho, Kyoungrok Abbott, Derek Kavehei, Omid |
description | The development of a bio-inspired image sensor that can match the functionality of the vertebrate retina in terms of image resolution, power dissipation and dynamic resolution demands an extremely challenging standard in terms of efficiency and performance [1]-[4]. At present, functional biological image processing possesses extremely high temporal resolution by asynchronously optimizing the sampling rate of a scene but suffers from low spatial resolution, noise, and an inability to process low frequency content [5]. Regardless, the use of dynamic vision sensors that emulate biological retina behaviors are important in performing classification tasks using high-speed motion detection at low-power requirements [6]-[9]. The difficulty in pushing image sensor performance to meet the specifications of the retina lies in the biological complexities of the underlying neural networks. Therefore, a prerequisite for hardware mapping of biological vision systems is understanding the bioprocessing between various retina cells. Here, we present a biologically plausible cellular network retina simulator, where light stimuli are accepted at the front-end array of photoreceptor cells, and pass through a system of nonlinear integral equations derived from experimental voltage- and current-clamp data used to calculate the response of each sequential retina cell. It was shown in [10], [11] that integrating the system improves performance when compared with conventional numerical solvers. We expect that by placing our simulator in the hands of interdisciplinary researchers, especially computational neuroscientists, mathematical scientists and machine learning practitioners, it will foster the development of more efficient representations of visual inputs in deep learning applications. |
doi_str_mv | 10.1109/MIM.2020.8979519 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8979519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8979519</ieee_id><sourcerecordid>2352190106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-dc671bd96f7a8aa1473aee1c68dc30e86aac7a56d762cb5cf50ff33854b1312e3</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhSMEEqWwI7FEYmJI8TmOE49VBbSihQVmy3Uu1FUSBztB4t_jKqXTne5970n3ougWyAyAiMfNajOjhJJZIXKRgTiLJiAYJARoeh52IljCBReX0ZX3e0KAsbyYRK9vtq1Ni8rFDnvTqjpM39nWY9zYEoP2FVfWxdXQDw7jFgdnG-u6ndGxaX3vhgbbXvXGttfRRaVqjzfHOY0-n58-Fstk_f6yWszXiWbA-qTUPIdtKXiVq0IpYHmqEEHzotQpwYIrpXOV8TLnVG8zXWWkqtK0yNgWUqCYTqOHMXenatk50yj3K60ycjlfy8ONUFYwQvkPBPZ-ZDtnvwf0vdzbwYU3vaRpRkEQIDxQZKS0s947rE6xQOShXhnqlYd65bHeYLkbLQYRT_i_-gePrXcC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2352190106</pqid></control><display><type>magazinearticle</type><title>Nonlinear retinal response modeling for future neuromorphic instrumentation</title><source>IEEE Electronic Library (IEL)</source><creator>Eshraghian, Jason K. ; Baek, Seungbum ; Levi, Timothee ; Kohno, Takashi ; Al-Sarawi, Said ; Leong, Philip H. W. ; Cho, Kyoungrok ; Abbott, Derek ; Kavehei, Omid</creator><creatorcontrib>Eshraghian, Jason K. ; Baek, Seungbum ; Levi, Timothee ; Kohno, Takashi ; Al-Sarawi, Said ; Leong, Philip H. W. ; Cho, Kyoungrok ; Abbott, Derek ; Kavehei, Omid</creatorcontrib><description>The development of a bio-inspired image sensor that can match the functionality of the vertebrate retina in terms of image resolution, power dissipation and dynamic resolution demands an extremely challenging standard in terms of efficiency and performance [1]-[4]. At present, functional biological image processing possesses extremely high temporal resolution by asynchronously optimizing the sampling rate of a scene but suffers from low spatial resolution, noise, and an inability to process low frequency content [5]. Regardless, the use of dynamic vision sensors that emulate biological retina behaviors are important in performing classification tasks using high-speed motion detection at low-power requirements [6]-[9]. The difficulty in pushing image sensor performance to meet the specifications of the retina lies in the biological complexities of the underlying neural networks. Therefore, a prerequisite for hardware mapping of biological vision systems is understanding the bioprocessing between various retina cells. Here, we present a biologically plausible cellular network retina simulator, where light stimuli are accepted at the front-end array of photoreceptor cells, and pass through a system of nonlinear integral equations derived from experimental voltage- and current-clamp data used to calculate the response of each sequential retina cell. It was shown in [10], [11] that integrating the system improves performance when compared with conventional numerical solvers. We expect that by placing our simulator in the hands of interdisciplinary researchers, especially computational neuroscientists, mathematical scientists and machine learning practitioners, it will foster the development of more efficient representations of visual inputs in deep learning applications.</description><identifier>ISSN: 1094-6969</identifier><identifier>EISSN: 1941-0123</identifier><identifier>DOI: 10.1109/MIM.2020.8979519</identifier><identifier>CODEN: IIMMF9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bioengineering ; Biological system modeling ; Biomimetics ; Bioprocessing ; Calcium ; Cellular communication ; Computer architecture ; Computer Science ; Computer simulation ; Computer Vision and Pattern Recognition ; Image detection ; Image processing ; Image resolution ; Instruments ; Integral equations ; Life Sciences ; Machine learning ; Mapping ; Motion perception ; Neural networks ; Nonlinear equations ; Nonlinear response ; Performance enhancement ; Photoreceptors ; Retina ; Sensitivity ; Solvers ; Spatial resolution ; Temporal resolution ; Vertebrates ; Vision systems</subject><ispartof>IEEE instrumentation & measurement magazine, 2020-02, Vol.23 (1), p.21-29</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-dc671bd96f7a8aa1473aee1c68dc30e86aac7a56d762cb5cf50ff33854b1312e3</citedby><cites>FETCH-LOGICAL-c414t-dc671bd96f7a8aa1473aee1c68dc30e86aac7a56d762cb5cf50ff33854b1312e3</cites><orcidid>0000-0003-0378-8529 ; 0000-0002-0945-2674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8979519$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,780,784,796,885,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8979519$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02484026$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Eshraghian, Jason K.</creatorcontrib><creatorcontrib>Baek, Seungbum</creatorcontrib><creatorcontrib>Levi, Timothee</creatorcontrib><creatorcontrib>Kohno, Takashi</creatorcontrib><creatorcontrib>Al-Sarawi, Said</creatorcontrib><creatorcontrib>Leong, Philip H. W.</creatorcontrib><creatorcontrib>Cho, Kyoungrok</creatorcontrib><creatorcontrib>Abbott, Derek</creatorcontrib><creatorcontrib>Kavehei, Omid</creatorcontrib><title>Nonlinear retinal response modeling for future neuromorphic instrumentation</title><title>IEEE instrumentation & measurement magazine</title><addtitle>IM-M</addtitle><description>The development of a bio-inspired image sensor that can match the functionality of the vertebrate retina in terms of image resolution, power dissipation and dynamic resolution demands an extremely challenging standard in terms of efficiency and performance [1]-[4]. At present, functional biological image processing possesses extremely high temporal resolution by asynchronously optimizing the sampling rate of a scene but suffers from low spatial resolution, noise, and an inability to process low frequency content [5]. Regardless, the use of dynamic vision sensors that emulate biological retina behaviors are important in performing classification tasks using high-speed motion detection at low-power requirements [6]-[9]. The difficulty in pushing image sensor performance to meet the specifications of the retina lies in the biological complexities of the underlying neural networks. Therefore, a prerequisite for hardware mapping of biological vision systems is understanding the bioprocessing between various retina cells. Here, we present a biologically plausible cellular network retina simulator, where light stimuli are accepted at the front-end array of photoreceptor cells, and pass through a system of nonlinear integral equations derived from experimental voltage- and current-clamp data used to calculate the response of each sequential retina cell. It was shown in [10], [11] that integrating the system improves performance when compared with conventional numerical solvers. We expect that by placing our simulator in the hands of interdisciplinary researchers, especially computational neuroscientists, mathematical scientists and machine learning practitioners, it will foster the development of more efficient representations of visual inputs in deep learning applications.</description><subject>Bioengineering</subject><subject>Biological system modeling</subject><subject>Biomimetics</subject><subject>Bioprocessing</subject><subject>Calcium</subject><subject>Cellular communication</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Image detection</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Instruments</subject><subject>Integral equations</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Motion perception</subject><subject>Neural networks</subject><subject>Nonlinear equations</subject><subject>Nonlinear response</subject><subject>Performance enhancement</subject><subject>Photoreceptors</subject><subject>Retina</subject><subject>Sensitivity</subject><subject>Solvers</subject><subject>Spatial resolution</subject><subject>Temporal resolution</subject><subject>Vertebrates</subject><subject>Vision systems</subject><issn>1094-6969</issn><issn>1941-0123</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2020</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDFPwzAQhSMEEqWwI7FEYmJI8TmOE49VBbSihQVmy3Uu1FUSBztB4t_jKqXTne5970n3ougWyAyAiMfNajOjhJJZIXKRgTiLJiAYJARoeh52IljCBReX0ZX3e0KAsbyYRK9vtq1Ni8rFDnvTqjpM39nWY9zYEoP2FVfWxdXQDw7jFgdnG-u6ndGxaX3vhgbbXvXGttfRRaVqjzfHOY0-n58-Fstk_f6yWszXiWbA-qTUPIdtKXiVq0IpYHmqEEHzotQpwYIrpXOV8TLnVG8zXWWkqtK0yNgWUqCYTqOHMXenatk50yj3K60ycjlfy8ONUFYwQvkPBPZ-ZDtnvwf0vdzbwYU3vaRpRkEQIDxQZKS0s947rE6xQOShXhnqlYd65bHeYLkbLQYRT_i_-gePrXcC</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Eshraghian, Jason K.</creator><creator>Baek, Seungbum</creator><creator>Levi, Timothee</creator><creator>Kohno, Takashi</creator><creator>Al-Sarawi, Said</creator><creator>Leong, Philip H. W.</creator><creator>Cho, Kyoungrok</creator><creator>Abbott, Derek</creator><creator>Kavehei, Omid</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0378-8529</orcidid><orcidid>https://orcid.org/0000-0002-0945-2674</orcidid></search><sort><creationdate>20200201</creationdate><title>Nonlinear retinal response modeling for future neuromorphic instrumentation</title><author>Eshraghian, Jason K. ; Baek, Seungbum ; Levi, Timothee ; Kohno, Takashi ; Al-Sarawi, Said ; Leong, Philip H. W. ; Cho, Kyoungrok ; Abbott, Derek ; Kavehei, Omid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-dc671bd96f7a8aa1473aee1c68dc30e86aac7a56d762cb5cf50ff33854b1312e3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioengineering</topic><topic>Biological system modeling</topic><topic>Biomimetics</topic><topic>Bioprocessing</topic><topic>Calcium</topic><topic>Cellular communication</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Image detection</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Instruments</topic><topic>Integral equations</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Motion perception</topic><topic>Neural networks</topic><topic>Nonlinear equations</topic><topic>Nonlinear response</topic><topic>Performance enhancement</topic><topic>Photoreceptors</topic><topic>Retina</topic><topic>Sensitivity</topic><topic>Solvers</topic><topic>Spatial resolution</topic><topic>Temporal resolution</topic><topic>Vertebrates</topic><topic>Vision systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Eshraghian, Jason K.</creatorcontrib><creatorcontrib>Baek, Seungbum</creatorcontrib><creatorcontrib>Levi, Timothee</creatorcontrib><creatorcontrib>Kohno, Takashi</creatorcontrib><creatorcontrib>Al-Sarawi, Said</creatorcontrib><creatorcontrib>Leong, Philip H. W.</creatorcontrib><creatorcontrib>Cho, Kyoungrok</creatorcontrib><creatorcontrib>Abbott, Derek</creatorcontrib><creatorcontrib>Kavehei, Omid</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE instrumentation & measurement magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eshraghian, Jason K.</au><au>Baek, Seungbum</au><au>Levi, Timothee</au><au>Kohno, Takashi</au><au>Al-Sarawi, Said</au><au>Leong, Philip H. W.</au><au>Cho, Kyoungrok</au><au>Abbott, Derek</au><au>Kavehei, Omid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear retinal response modeling for future neuromorphic instrumentation</atitle><jtitle>IEEE instrumentation & measurement magazine</jtitle><stitle>IM-M</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>23</volume><issue>1</issue><spage>21</spage><epage>29</epage><pages>21-29</pages><issn>1094-6969</issn><eissn>1941-0123</eissn><coden>IIMMF9</coden><abstract>The development of a bio-inspired image sensor that can match the functionality of the vertebrate retina in terms of image resolution, power dissipation and dynamic resolution demands an extremely challenging standard in terms of efficiency and performance [1]-[4]. At present, functional biological image processing possesses extremely high temporal resolution by asynchronously optimizing the sampling rate of a scene but suffers from low spatial resolution, noise, and an inability to process low frequency content [5]. Regardless, the use of dynamic vision sensors that emulate biological retina behaviors are important in performing classification tasks using high-speed motion detection at low-power requirements [6]-[9]. The difficulty in pushing image sensor performance to meet the specifications of the retina lies in the biological complexities of the underlying neural networks. Therefore, a prerequisite for hardware mapping of biological vision systems is understanding the bioprocessing between various retina cells. Here, we present a biologically plausible cellular network retina simulator, where light stimuli are accepted at the front-end array of photoreceptor cells, and pass through a system of nonlinear integral equations derived from experimental voltage- and current-clamp data used to calculate the response of each sequential retina cell. It was shown in [10], [11] that integrating the system improves performance when compared with conventional numerical solvers. We expect that by placing our simulator in the hands of interdisciplinary researchers, especially computational neuroscientists, mathematical scientists and machine learning practitioners, it will foster the development of more efficient representations of visual inputs in deep learning applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MIM.2020.8979519</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0378-8529</orcidid><orcidid>https://orcid.org/0000-0002-0945-2674</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-6969 |
ispartof | IEEE instrumentation & measurement magazine, 2020-02, Vol.23 (1), p.21-29 |
issn | 1094-6969 1941-0123 |
language | eng |
recordid | cdi_ieee_primary_8979519 |
source | IEEE Electronic Library (IEL) |
subjects | Bioengineering Biological system modeling Biomimetics Bioprocessing Calcium Cellular communication Computer architecture Computer Science Computer simulation Computer Vision and Pattern Recognition Image detection Image processing Image resolution Instruments Integral equations Life Sciences Machine learning Mapping Motion perception Neural networks Nonlinear equations Nonlinear response Performance enhancement Photoreceptors Retina Sensitivity Solvers Spatial resolution Temporal resolution Vertebrates Vision systems |
title | Nonlinear retinal response modeling for future neuromorphic instrumentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20retinal%20response%20modeling%20for%20future%20neuromorphic%20instrumentation&rft.jtitle=IEEE%20instrumentation%20&%20measurement%20magazine&rft.au=Eshraghian,%20Jason%20K.&rft.date=2020-02-01&rft.volume=23&rft.issue=1&rft.spage=21&rft.epage=29&rft.pages=21-29&rft.issn=1094-6969&rft.eissn=1941-0123&rft.coden=IIMMF9&rft_id=info:doi/10.1109/MIM.2020.8979519&rft_dat=%3Cproquest_RIE%3E2352190106%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352190106&rft_id=info:pmid/&rft_ieee_id=8979519&rfr_iscdi=true |