Nonlinear retinal response modeling for future neuromorphic instrumentation

The development of a bio-inspired image sensor that can match the functionality of the vertebrate retina in terms of image resolution, power dissipation and dynamic resolution demands an extremely challenging standard in terms of efficiency and performance [1]-[4]. At present, functional biological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE instrumentation & measurement magazine 2020-02, Vol.23 (1), p.21-29
Hauptverfasser: Eshraghian, Jason K., Baek, Seungbum, Levi, Timothee, Kohno, Takashi, Al-Sarawi, Said, Leong, Philip H. W., Cho, Kyoungrok, Abbott, Derek, Kavehei, Omid
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 1
container_start_page 21
container_title IEEE instrumentation & measurement magazine
container_volume 23
creator Eshraghian, Jason K.
Baek, Seungbum
Levi, Timothee
Kohno, Takashi
Al-Sarawi, Said
Leong, Philip H. W.
Cho, Kyoungrok
Abbott, Derek
Kavehei, Omid
description The development of a bio-inspired image sensor that can match the functionality of the vertebrate retina in terms of image resolution, power dissipation and dynamic resolution demands an extremely challenging standard in terms of efficiency and performance [1]-[4]. At present, functional biological image processing possesses extremely high temporal resolution by asynchronously optimizing the sampling rate of a scene but suffers from low spatial resolution, noise, and an inability to process low frequency content [5]. Regardless, the use of dynamic vision sensors that emulate biological retina behaviors are important in performing classification tasks using high-speed motion detection at low-power requirements [6]-[9]. The difficulty in pushing image sensor performance to meet the specifications of the retina lies in the biological complexities of the underlying neural networks. Therefore, a prerequisite for hardware mapping of biological vision systems is understanding the bioprocessing between various retina cells. Here, we present a biologically plausible cellular network retina simulator, where light stimuli are accepted at the front-end array of photoreceptor cells, and pass through a system of nonlinear integral equations derived from experimental voltage- and current-clamp data used to calculate the response of each sequential retina cell. It was shown in [10], [11] that integrating the system improves performance when compared with conventional numerical solvers. We expect that by placing our simulator in the hands of interdisciplinary researchers, especially computational neuroscientists, mathematical scientists and machine learning practitioners, it will foster the development of more efficient representations of visual inputs in deep learning applications.
doi_str_mv 10.1109/MIM.2020.8979519
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8979519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8979519</ieee_id><sourcerecordid>2352190106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-dc671bd96f7a8aa1473aee1c68dc30e86aac7a56d762cb5cf50ff33854b1312e3</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhSMEEqWwI7FEYmJI8TmOE49VBbSihQVmy3Uu1FUSBztB4t_jKqXTne5970n3ougWyAyAiMfNajOjhJJZIXKRgTiLJiAYJARoeh52IljCBReX0ZX3e0KAsbyYRK9vtq1Ni8rFDnvTqjpM39nWY9zYEoP2FVfWxdXQDw7jFgdnG-u6ndGxaX3vhgbbXvXGttfRRaVqjzfHOY0-n58-Fstk_f6yWszXiWbA-qTUPIdtKXiVq0IpYHmqEEHzotQpwYIrpXOV8TLnVG8zXWWkqtK0yNgWUqCYTqOHMXenatk50yj3K60ycjlfy8ONUFYwQvkPBPZ-ZDtnvwf0vdzbwYU3vaRpRkEQIDxQZKS0s947rE6xQOShXhnqlYd65bHeYLkbLQYRT_i_-gePrXcC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2352190106</pqid></control><display><type>magazinearticle</type><title>Nonlinear retinal response modeling for future neuromorphic instrumentation</title><source>IEEE Electronic Library (IEL)</source><creator>Eshraghian, Jason K. ; Baek, Seungbum ; Levi, Timothee ; Kohno, Takashi ; Al-Sarawi, Said ; Leong, Philip H. W. ; Cho, Kyoungrok ; Abbott, Derek ; Kavehei, Omid</creator><creatorcontrib>Eshraghian, Jason K. ; Baek, Seungbum ; Levi, Timothee ; Kohno, Takashi ; Al-Sarawi, Said ; Leong, Philip H. W. ; Cho, Kyoungrok ; Abbott, Derek ; Kavehei, Omid</creatorcontrib><description>The development of a bio-inspired image sensor that can match the functionality of the vertebrate retina in terms of image resolution, power dissipation and dynamic resolution demands an extremely challenging standard in terms of efficiency and performance [1]-[4]. At present, functional biological image processing possesses extremely high temporal resolution by asynchronously optimizing the sampling rate of a scene but suffers from low spatial resolution, noise, and an inability to process low frequency content [5]. Regardless, the use of dynamic vision sensors that emulate biological retina behaviors are important in performing classification tasks using high-speed motion detection at low-power requirements [6]-[9]. The difficulty in pushing image sensor performance to meet the specifications of the retina lies in the biological complexities of the underlying neural networks. Therefore, a prerequisite for hardware mapping of biological vision systems is understanding the bioprocessing between various retina cells. Here, we present a biologically plausible cellular network retina simulator, where light stimuli are accepted at the front-end array of photoreceptor cells, and pass through a system of nonlinear integral equations derived from experimental voltage- and current-clamp data used to calculate the response of each sequential retina cell. It was shown in [10], [11] that integrating the system improves performance when compared with conventional numerical solvers. We expect that by placing our simulator in the hands of interdisciplinary researchers, especially computational neuroscientists, mathematical scientists and machine learning practitioners, it will foster the development of more efficient representations of visual inputs in deep learning applications.</description><identifier>ISSN: 1094-6969</identifier><identifier>EISSN: 1941-0123</identifier><identifier>DOI: 10.1109/MIM.2020.8979519</identifier><identifier>CODEN: IIMMF9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bioengineering ; Biological system modeling ; Biomimetics ; Bioprocessing ; Calcium ; Cellular communication ; Computer architecture ; Computer Science ; Computer simulation ; Computer Vision and Pattern Recognition ; Image detection ; Image processing ; Image resolution ; Instruments ; Integral equations ; Life Sciences ; Machine learning ; Mapping ; Motion perception ; Neural networks ; Nonlinear equations ; Nonlinear response ; Performance enhancement ; Photoreceptors ; Retina ; Sensitivity ; Solvers ; Spatial resolution ; Temporal resolution ; Vertebrates ; Vision systems</subject><ispartof>IEEE instrumentation &amp; measurement magazine, 2020-02, Vol.23 (1), p.21-29</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-dc671bd96f7a8aa1473aee1c68dc30e86aac7a56d762cb5cf50ff33854b1312e3</citedby><cites>FETCH-LOGICAL-c414t-dc671bd96f7a8aa1473aee1c68dc30e86aac7a56d762cb5cf50ff33854b1312e3</cites><orcidid>0000-0003-0378-8529 ; 0000-0002-0945-2674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8979519$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,780,784,796,885,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8979519$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02484026$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Eshraghian, Jason K.</creatorcontrib><creatorcontrib>Baek, Seungbum</creatorcontrib><creatorcontrib>Levi, Timothee</creatorcontrib><creatorcontrib>Kohno, Takashi</creatorcontrib><creatorcontrib>Al-Sarawi, Said</creatorcontrib><creatorcontrib>Leong, Philip H. W.</creatorcontrib><creatorcontrib>Cho, Kyoungrok</creatorcontrib><creatorcontrib>Abbott, Derek</creatorcontrib><creatorcontrib>Kavehei, Omid</creatorcontrib><title>Nonlinear retinal response modeling for future neuromorphic instrumentation</title><title>IEEE instrumentation &amp; measurement magazine</title><addtitle>IM-M</addtitle><description>The development of a bio-inspired image sensor that can match the functionality of the vertebrate retina in terms of image resolution, power dissipation and dynamic resolution demands an extremely challenging standard in terms of efficiency and performance [1]-[4]. At present, functional biological image processing possesses extremely high temporal resolution by asynchronously optimizing the sampling rate of a scene but suffers from low spatial resolution, noise, and an inability to process low frequency content [5]. Regardless, the use of dynamic vision sensors that emulate biological retina behaviors are important in performing classification tasks using high-speed motion detection at low-power requirements [6]-[9]. The difficulty in pushing image sensor performance to meet the specifications of the retina lies in the biological complexities of the underlying neural networks. Therefore, a prerequisite for hardware mapping of biological vision systems is understanding the bioprocessing between various retina cells. Here, we present a biologically plausible cellular network retina simulator, where light stimuli are accepted at the front-end array of photoreceptor cells, and pass through a system of nonlinear integral equations derived from experimental voltage- and current-clamp data used to calculate the response of each sequential retina cell. It was shown in [10], [11] that integrating the system improves performance when compared with conventional numerical solvers. We expect that by placing our simulator in the hands of interdisciplinary researchers, especially computational neuroscientists, mathematical scientists and machine learning practitioners, it will foster the development of more efficient representations of visual inputs in deep learning applications.</description><subject>Bioengineering</subject><subject>Biological system modeling</subject><subject>Biomimetics</subject><subject>Bioprocessing</subject><subject>Calcium</subject><subject>Cellular communication</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Image detection</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Instruments</subject><subject>Integral equations</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Motion perception</subject><subject>Neural networks</subject><subject>Nonlinear equations</subject><subject>Nonlinear response</subject><subject>Performance enhancement</subject><subject>Photoreceptors</subject><subject>Retina</subject><subject>Sensitivity</subject><subject>Solvers</subject><subject>Spatial resolution</subject><subject>Temporal resolution</subject><subject>Vertebrates</subject><subject>Vision systems</subject><issn>1094-6969</issn><issn>1941-0123</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2020</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDFPwzAQhSMEEqWwI7FEYmJI8TmOE49VBbSihQVmy3Uu1FUSBztB4t_jKqXTne5970n3ougWyAyAiMfNajOjhJJZIXKRgTiLJiAYJARoeh52IljCBReX0ZX3e0KAsbyYRK9vtq1Ni8rFDnvTqjpM39nWY9zYEoP2FVfWxdXQDw7jFgdnG-u6ndGxaX3vhgbbXvXGttfRRaVqjzfHOY0-n58-Fstk_f6yWszXiWbA-qTUPIdtKXiVq0IpYHmqEEHzotQpwYIrpXOV8TLnVG8zXWWkqtK0yNgWUqCYTqOHMXenatk50yj3K60ycjlfy8ONUFYwQvkPBPZ-ZDtnvwf0vdzbwYU3vaRpRkEQIDxQZKS0s947rE6xQOShXhnqlYd65bHeYLkbLQYRT_i_-gePrXcC</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Eshraghian, Jason K.</creator><creator>Baek, Seungbum</creator><creator>Levi, Timothee</creator><creator>Kohno, Takashi</creator><creator>Al-Sarawi, Said</creator><creator>Leong, Philip H. W.</creator><creator>Cho, Kyoungrok</creator><creator>Abbott, Derek</creator><creator>Kavehei, Omid</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0378-8529</orcidid><orcidid>https://orcid.org/0000-0002-0945-2674</orcidid></search><sort><creationdate>20200201</creationdate><title>Nonlinear retinal response modeling for future neuromorphic instrumentation</title><author>Eshraghian, Jason K. ; Baek, Seungbum ; Levi, Timothee ; Kohno, Takashi ; Al-Sarawi, Said ; Leong, Philip H. W. ; Cho, Kyoungrok ; Abbott, Derek ; Kavehei, Omid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-dc671bd96f7a8aa1473aee1c68dc30e86aac7a56d762cb5cf50ff33854b1312e3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioengineering</topic><topic>Biological system modeling</topic><topic>Biomimetics</topic><topic>Bioprocessing</topic><topic>Calcium</topic><topic>Cellular communication</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Image detection</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Instruments</topic><topic>Integral equations</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Motion perception</topic><topic>Neural networks</topic><topic>Nonlinear equations</topic><topic>Nonlinear response</topic><topic>Performance enhancement</topic><topic>Photoreceptors</topic><topic>Retina</topic><topic>Sensitivity</topic><topic>Solvers</topic><topic>Spatial resolution</topic><topic>Temporal resolution</topic><topic>Vertebrates</topic><topic>Vision systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Eshraghian, Jason K.</creatorcontrib><creatorcontrib>Baek, Seungbum</creatorcontrib><creatorcontrib>Levi, Timothee</creatorcontrib><creatorcontrib>Kohno, Takashi</creatorcontrib><creatorcontrib>Al-Sarawi, Said</creatorcontrib><creatorcontrib>Leong, Philip H. W.</creatorcontrib><creatorcontrib>Cho, Kyoungrok</creatorcontrib><creatorcontrib>Abbott, Derek</creatorcontrib><creatorcontrib>Kavehei, Omid</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE instrumentation &amp; measurement magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eshraghian, Jason K.</au><au>Baek, Seungbum</au><au>Levi, Timothee</au><au>Kohno, Takashi</au><au>Al-Sarawi, Said</au><au>Leong, Philip H. W.</au><au>Cho, Kyoungrok</au><au>Abbott, Derek</au><au>Kavehei, Omid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear retinal response modeling for future neuromorphic instrumentation</atitle><jtitle>IEEE instrumentation &amp; measurement magazine</jtitle><stitle>IM-M</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>23</volume><issue>1</issue><spage>21</spage><epage>29</epage><pages>21-29</pages><issn>1094-6969</issn><eissn>1941-0123</eissn><coden>IIMMF9</coden><abstract>The development of a bio-inspired image sensor that can match the functionality of the vertebrate retina in terms of image resolution, power dissipation and dynamic resolution demands an extremely challenging standard in terms of efficiency and performance [1]-[4]. At present, functional biological image processing possesses extremely high temporal resolution by asynchronously optimizing the sampling rate of a scene but suffers from low spatial resolution, noise, and an inability to process low frequency content [5]. Regardless, the use of dynamic vision sensors that emulate biological retina behaviors are important in performing classification tasks using high-speed motion detection at low-power requirements [6]-[9]. The difficulty in pushing image sensor performance to meet the specifications of the retina lies in the biological complexities of the underlying neural networks. Therefore, a prerequisite for hardware mapping of biological vision systems is understanding the bioprocessing between various retina cells. Here, we present a biologically plausible cellular network retina simulator, where light stimuli are accepted at the front-end array of photoreceptor cells, and pass through a system of nonlinear integral equations derived from experimental voltage- and current-clamp data used to calculate the response of each sequential retina cell. It was shown in [10], [11] that integrating the system improves performance when compared with conventional numerical solvers. We expect that by placing our simulator in the hands of interdisciplinary researchers, especially computational neuroscientists, mathematical scientists and machine learning practitioners, it will foster the development of more efficient representations of visual inputs in deep learning applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MIM.2020.8979519</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0378-8529</orcidid><orcidid>https://orcid.org/0000-0002-0945-2674</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-6969
ispartof IEEE instrumentation & measurement magazine, 2020-02, Vol.23 (1), p.21-29
issn 1094-6969
1941-0123
language eng
recordid cdi_ieee_primary_8979519
source IEEE Electronic Library (IEL)
subjects Bioengineering
Biological system modeling
Biomimetics
Bioprocessing
Calcium
Cellular communication
Computer architecture
Computer Science
Computer simulation
Computer Vision and Pattern Recognition
Image detection
Image processing
Image resolution
Instruments
Integral equations
Life Sciences
Machine learning
Mapping
Motion perception
Neural networks
Nonlinear equations
Nonlinear response
Performance enhancement
Photoreceptors
Retina
Sensitivity
Solvers
Spatial resolution
Temporal resolution
Vertebrates
Vision systems
title Nonlinear retinal response modeling for future neuromorphic instrumentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20retinal%20response%20modeling%20for%20future%20neuromorphic%20instrumentation&rft.jtitle=IEEE%20instrumentation%20&%20measurement%20magazine&rft.au=Eshraghian,%20Jason%20K.&rft.date=2020-02-01&rft.volume=23&rft.issue=1&rft.spage=21&rft.epage=29&rft.pages=21-29&rft.issn=1094-6969&rft.eissn=1941-0123&rft.coden=IIMMF9&rft_id=info:doi/10.1109/MIM.2020.8979519&rft_dat=%3Cproquest_RIE%3E2352190106%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352190106&rft_id=info:pmid/&rft_ieee_id=8979519&rfr_iscdi=true