Recognition of the operational states in electric arc furnaces

For the optimization of the operation of electric arc furnaces (EAFs) it is important that the actual operational state of the furnace can be quickly and exactly determined. This paper presents a new approach that allows tracking of the melting process. This method uses a neural network in order to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Raisz, D., Sakulin, M., Renner, H., Tehlivets, Y.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480 vol.2
container_issue
container_start_page 475
container_title
container_volume 2
creator Raisz, D.
Sakulin, M.
Renner, H.
Tehlivets, Y.
description For the optimization of the operation of electric arc furnaces (EAFs) it is important that the actual operational state of the furnace can be quickly and exactly determined. This paper presents a new approach that allows tracking of the melting process. This method uses a neural network in order to classify the dynamic characteristics and is compared in this paper with other methods, like the smoothed standard deviation of arc voltages and the partial harmonic distortion approaches. Finally, an application example for the introduced procedure is shown.
doi_str_mv 10.1109/ICHQP.2000.897725
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_897725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>897725</ieee_id><sourcerecordid>897725</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-c03dc782a4b30211a501fe37f9b41a429910adcb87d60f03ba6e9ca7a2579dd83</originalsourceid><addsrcrecordid>eNotj9tKxDAURQMiKGM_QJ_yA60nlzbJiyBFnYEBL-jzcJqeaKS2QxIf_HtHRtiwYW1YsBm7FNAIAe5606-fnxoJAI11xsj2hFXOWDhEddo5e8aqnD8PO-hWdw7O2c0L-eV9jiUuM18CLx_Elz0l_AM48VywUOZx5jSRLyl6jsnz8J1m9JQv2GnAKVP13yv2dn_32q_r7ePDpr_d1lEYXWoPavTGStSDAikEtiACKRPcoAVq6ZwAHP1gzdhBADVgR86jQdkaN45WrdjV0RuJaLdP8QvTz-54Uv0C1mVHyA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Recognition of the operational states in electric arc furnaces</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Raisz, D. ; Sakulin, M. ; Renner, H. ; Tehlivets, Y.</creator><creatorcontrib>Raisz, D. ; Sakulin, M. ; Renner, H. ; Tehlivets, Y.</creatorcontrib><description>For the optimization of the operation of electric arc furnaces (EAFs) it is important that the actual operational state of the furnace can be quickly and exactly determined. This paper presents a new approach that allows tracking of the melting process. This method uses a neural network in order to classify the dynamic characteristics and is compared in this paper with other methods, like the smoothed standard deviation of arc voltages and the partial harmonic distortion approaches. Finally, an application example for the introduced procedure is shown.</description><identifier>ISBN: 9780780364998</identifier><identifier>ISBN: 0780364996</identifier><identifier>DOI: 10.1109/ICHQP.2000.897725</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electrodes ; Furnaces ; Iron ; Neural networks ; Power generation economics ; Power system economics ; Power system protection ; Productivity ; Slag ; Steel</subject><ispartof>Ninth International Conference on Harmonics and Quality of Power. Proceedings (Cat. No.00EX441), 2000, Vol.2, p.475-480 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/897725$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/897725$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Raisz, D.</creatorcontrib><creatorcontrib>Sakulin, M.</creatorcontrib><creatorcontrib>Renner, H.</creatorcontrib><creatorcontrib>Tehlivets, Y.</creatorcontrib><title>Recognition of the operational states in electric arc furnaces</title><title>Ninth International Conference on Harmonics and Quality of Power. Proceedings (Cat. No.00EX441)</title><addtitle>ICHQP</addtitle><description>For the optimization of the operation of electric arc furnaces (EAFs) it is important that the actual operational state of the furnace can be quickly and exactly determined. This paper presents a new approach that allows tracking of the melting process. This method uses a neural network in order to classify the dynamic characteristics and is compared in this paper with other methods, like the smoothed standard deviation of arc voltages and the partial harmonic distortion approaches. Finally, an application example for the introduced procedure is shown.</description><subject>Electrodes</subject><subject>Furnaces</subject><subject>Iron</subject><subject>Neural networks</subject><subject>Power generation economics</subject><subject>Power system economics</subject><subject>Power system protection</subject><subject>Productivity</subject><subject>Slag</subject><subject>Steel</subject><isbn>9780780364998</isbn><isbn>0780364996</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj9tKxDAURQMiKGM_QJ_yA60nlzbJiyBFnYEBL-jzcJqeaKS2QxIf_HtHRtiwYW1YsBm7FNAIAe5606-fnxoJAI11xsj2hFXOWDhEddo5e8aqnD8PO-hWdw7O2c0L-eV9jiUuM18CLx_Elz0l_AM48VywUOZx5jSRLyl6jsnz8J1m9JQv2GnAKVP13yv2dn_32q_r7ePDpr_d1lEYXWoPavTGStSDAikEtiACKRPcoAVq6ZwAHP1gzdhBADVgR86jQdkaN45WrdjV0RuJaLdP8QvTz-54Uv0C1mVHyA</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Raisz, D.</creator><creator>Sakulin, M.</creator><creator>Renner, H.</creator><creator>Tehlivets, Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Recognition of the operational states in electric arc furnaces</title><author>Raisz, D. ; Sakulin, M. ; Renner, H. ; Tehlivets, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-c03dc782a4b30211a501fe37f9b41a429910adcb87d60f03ba6e9ca7a2579dd83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Electrodes</topic><topic>Furnaces</topic><topic>Iron</topic><topic>Neural networks</topic><topic>Power generation economics</topic><topic>Power system economics</topic><topic>Power system protection</topic><topic>Productivity</topic><topic>Slag</topic><topic>Steel</topic><toplevel>online_resources</toplevel><creatorcontrib>Raisz, D.</creatorcontrib><creatorcontrib>Sakulin, M.</creatorcontrib><creatorcontrib>Renner, H.</creatorcontrib><creatorcontrib>Tehlivets, Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raisz, D.</au><au>Sakulin, M.</au><au>Renner, H.</au><au>Tehlivets, Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recognition of the operational states in electric arc furnaces</atitle><btitle>Ninth International Conference on Harmonics and Quality of Power. Proceedings (Cat. No.00EX441)</btitle><stitle>ICHQP</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>475</spage><epage>480 vol.2</epage><pages>475-480 vol.2</pages><isbn>9780780364998</isbn><isbn>0780364996</isbn><abstract>For the optimization of the operation of electric arc furnaces (EAFs) it is important that the actual operational state of the furnace can be quickly and exactly determined. This paper presents a new approach that allows tracking of the melting process. This method uses a neural network in order to classify the dynamic characteristics and is compared in this paper with other methods, like the smoothed standard deviation of arc voltages and the partial harmonic distortion approaches. Finally, an application example for the introduced procedure is shown.</abstract><pub>IEEE</pub><doi>10.1109/ICHQP.2000.897725</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780364998
ispartof Ninth International Conference on Harmonics and Quality of Power. Proceedings (Cat. No.00EX441), 2000, Vol.2, p.475-480 vol.2
issn
language eng
recordid cdi_ieee_primary_897725
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Electrodes
Furnaces
Iron
Neural networks
Power generation economics
Power system economics
Power system protection
Productivity
Slag
Steel
title Recognition of the operational states in electric arc furnaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recognition%20of%20the%20operational%20states%20in%20electric%20arc%20furnaces&rft.btitle=Ninth%20International%20Conference%20on%20Harmonics%20and%20Quality%20of%20Power.%20Proceedings%20(Cat.%20No.00EX441)&rft.au=Raisz,%20D.&rft.date=2000&rft.volume=2&rft.spage=475&rft.epage=480%20vol.2&rft.pages=475-480%20vol.2&rft.isbn=9780780364998&rft.isbn_list=0780364996&rft_id=info:doi/10.1109/ICHQP.2000.897725&rft_dat=%3Cieee_6IE%3E897725%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=897725&rfr_iscdi=true