Assessing Active Learning Strategies to Improve the Quality Control of the Soybean Seed Vigor
Seed companies increasingly seek excellence in production quality through rigorous processes, such as the tetrazolium test (TZ test) and the vigor definition. However, these are extremely laborious processes since it necessitates the experience of a specialist and the visual analysis of a considerab...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2021-02, Vol.68 (2), p.1675-1683 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1683 |
---|---|
container_issue | 2 |
container_start_page | 1675 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 68 |
creator | Pereira, Douglas Felipe Bugatti, Pedro Henrique Lopes, Fabricio Martins de Souza, Andre Luis Siqueira Marques Saito, Priscila Tiemi Maeda |
description | Seed companies increasingly seek excellence in production quality through rigorous processes, such as the tetrazolium test (TZ test) and the vigor definition. However, these are extremely laborious processes since it necessitates the experience of a specialist and the visual analysis of a considerable quantity of seeds as sampling for determining the vigor of the seed lot.Moreover, although the TZ test has a defined protocol, this analysis may vary from analyst to analyst because it is a subjective human process. In this context, several efforts have been carried out in an attempt to automate the analysis process, in order to reduce their intrinsic problems. Thus, this article presents approaches for the learning and classification of the soybean seed vigor. In addition, alternative active learning strategies are proposed to improve the selection of the most informative samples for the learning process. An extensive experimental evaluation is performed considering different datasets and state-of-the-art learning techniques. Based on the obtained results, it is possible to observe that active learning approaches lead to more robust classifiers, which reach higher accuracies faster (in less learning iterations) than traditional supervised learning approaches. We also obtained a reduction of \text{95.22}{\%} of labeled samples used in the learning process. |
doi_str_mv | 10.1109/TIE.2020.2969106 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8974615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8974615</ieee_id><sourcerecordid>2457972752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-54c58dff6e3c48ad3990f3a7cbf4cc8eb9b3b5ae3ef896b7febed074f38769f03</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bpJjKX4UCiKt3iRkdyd1S7upSSr0v3dri6dhZt6bN_wQuqVkRCkxD4vp44gRRkbMlIaS8gwNqJSqMEboczQgTOmCEFFeoquUVoRQIakcoM9xSpBS2y3xuM7tD-AZuNgd-nmOLsOyhYRzwNPNNoZ-nb8Av-3cus17PAldjmGNg_8bz8O-AtfhOUCDP9pliNfowrt1gptTHaL3p8fF5KWYvT5PJ-NZUTNDcyFFLXXjfQm8Fto13BjiuVN15UVda6hMxSvpgIPXpqyUhwoaooTnWpXGEz5E98e7_Y_fO0jZrsIudn2kZUIqo5iSrFeRo6qOIaUI3m5ju3FxbymxB4i2h2gPEO0JYm-5O1paAPiXa6NESSX_BUsCbr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457972752</pqid></control><display><type>article</type><title>Assessing Active Learning Strategies to Improve the Quality Control of the Soybean Seed Vigor</title><source>IEEE Electronic Library (IEL)</source><creator>Pereira, Douglas Felipe ; Bugatti, Pedro Henrique ; Lopes, Fabricio Martins ; de Souza, Andre Luis Siqueira Marques ; Saito, Priscila Tiemi Maeda</creator><creatorcontrib>Pereira, Douglas Felipe ; Bugatti, Pedro Henrique ; Lopes, Fabricio Martins ; de Souza, Andre Luis Siqueira Marques ; Saito, Priscila Tiemi Maeda</creatorcontrib><description>Seed companies increasingly seek excellence in production quality through rigorous processes, such as the tetrazolium test (TZ test) and the vigor definition. However, these are extremely laborious processes since it necessitates the experience of a specialist and the visual analysis of a considerable quantity of seeds as sampling for determining the vigor of the seed lot.Moreover, although the TZ test has a defined protocol, this analysis may vary from analyst to analyst because it is a subjective human process. In this context, several efforts have been carried out in an attempt to automate the analysis process, in order to reduce their intrinsic problems. Thus, this article presents approaches for the learning and classification of the soybean seed vigor. In addition, alternative active learning strategies are proposed to improve the selection of the most informative samples for the learning process. An extensive experimental evaluation is performed considering different datasets and state-of-the-art learning techniques. Based on the obtained results, it is possible to observe that active learning approaches lead to more robust classifiers, which reach higher accuracies faster (in less learning iterations) than traditional supervised learning approaches. We also obtained a reduction of <inline-formula><tex-math notation="LaTeX">\text{95.22}{\%}</tex-math></inline-formula> of labeled samples used in the learning process.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2020.2969106</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active learning ; Annotations ; Classification ; image analysis ; machine learning ; Organizations ; Pipelines ; Proposals ; Quality control ; Soybeans ; Supervised learning ; tetrazolium test (TZ test) ; Training ; Uncertainty</subject><ispartof>IEEE transactions on industrial electronics (1982), 2021-02, Vol.68 (2), p.1675-1683</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-54c58dff6e3c48ad3990f3a7cbf4cc8eb9b3b5ae3ef896b7febed074f38769f03</citedby><cites>FETCH-LOGICAL-c291t-54c58dff6e3c48ad3990f3a7cbf4cc8eb9b3b5ae3ef896b7febed074f38769f03</cites><orcidid>0000-0003-1234-2860 ; 0000-0001-9421-9254 ; 0000-0002-4870-4766 ; 0000-0002-8786-3313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8974615$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8974615$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pereira, Douglas Felipe</creatorcontrib><creatorcontrib>Bugatti, Pedro Henrique</creatorcontrib><creatorcontrib>Lopes, Fabricio Martins</creatorcontrib><creatorcontrib>de Souza, Andre Luis Siqueira Marques</creatorcontrib><creatorcontrib>Saito, Priscila Tiemi Maeda</creatorcontrib><title>Assessing Active Learning Strategies to Improve the Quality Control of the Soybean Seed Vigor</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Seed companies increasingly seek excellence in production quality through rigorous processes, such as the tetrazolium test (TZ test) and the vigor definition. However, these are extremely laborious processes since it necessitates the experience of a specialist and the visual analysis of a considerable quantity of seeds as sampling for determining the vigor of the seed lot.Moreover, although the TZ test has a defined protocol, this analysis may vary from analyst to analyst because it is a subjective human process. In this context, several efforts have been carried out in an attempt to automate the analysis process, in order to reduce their intrinsic problems. Thus, this article presents approaches for the learning and classification of the soybean seed vigor. In addition, alternative active learning strategies are proposed to improve the selection of the most informative samples for the learning process. An extensive experimental evaluation is performed considering different datasets and state-of-the-art learning techniques. Based on the obtained results, it is possible to observe that active learning approaches lead to more robust classifiers, which reach higher accuracies faster (in less learning iterations) than traditional supervised learning approaches. We also obtained a reduction of <inline-formula><tex-math notation="LaTeX">\text{95.22}{\%}</tex-math></inline-formula> of labeled samples used in the learning process.</description><subject>Active learning</subject><subject>Annotations</subject><subject>Classification</subject><subject>image analysis</subject><subject>machine learning</subject><subject>Organizations</subject><subject>Pipelines</subject><subject>Proposals</subject><subject>Quality control</subject><subject>Soybeans</subject><subject>Supervised learning</subject><subject>tetrazolium test (TZ test)</subject><subject>Training</subject><subject>Uncertainty</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bpJjKX4UCiKt3iRkdyd1S7upSSr0v3dri6dhZt6bN_wQuqVkRCkxD4vp44gRRkbMlIaS8gwNqJSqMEboczQgTOmCEFFeoquUVoRQIakcoM9xSpBS2y3xuM7tD-AZuNgd-nmOLsOyhYRzwNPNNoZ-nb8Av-3cus17PAldjmGNg_8bz8O-AtfhOUCDP9pliNfowrt1gptTHaL3p8fF5KWYvT5PJ-NZUTNDcyFFLXXjfQm8Fto13BjiuVN15UVda6hMxSvpgIPXpqyUhwoaooTnWpXGEz5E98e7_Y_fO0jZrsIudn2kZUIqo5iSrFeRo6qOIaUI3m5ju3FxbymxB4i2h2gPEO0JYm-5O1paAPiXa6NESSX_BUsCbr8</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Pereira, Douglas Felipe</creator><creator>Bugatti, Pedro Henrique</creator><creator>Lopes, Fabricio Martins</creator><creator>de Souza, Andre Luis Siqueira Marques</creator><creator>Saito, Priscila Tiemi Maeda</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1234-2860</orcidid><orcidid>https://orcid.org/0000-0001-9421-9254</orcidid><orcidid>https://orcid.org/0000-0002-4870-4766</orcidid><orcidid>https://orcid.org/0000-0002-8786-3313</orcidid></search><sort><creationdate>20210201</creationdate><title>Assessing Active Learning Strategies to Improve the Quality Control of the Soybean Seed Vigor</title><author>Pereira, Douglas Felipe ; Bugatti, Pedro Henrique ; Lopes, Fabricio Martins ; de Souza, Andre Luis Siqueira Marques ; Saito, Priscila Tiemi Maeda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-54c58dff6e3c48ad3990f3a7cbf4cc8eb9b3b5ae3ef896b7febed074f38769f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active learning</topic><topic>Annotations</topic><topic>Classification</topic><topic>image analysis</topic><topic>machine learning</topic><topic>Organizations</topic><topic>Pipelines</topic><topic>Proposals</topic><topic>Quality control</topic><topic>Soybeans</topic><topic>Supervised learning</topic><topic>tetrazolium test (TZ test)</topic><topic>Training</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereira, Douglas Felipe</creatorcontrib><creatorcontrib>Bugatti, Pedro Henrique</creatorcontrib><creatorcontrib>Lopes, Fabricio Martins</creatorcontrib><creatorcontrib>de Souza, Andre Luis Siqueira Marques</creatorcontrib><creatorcontrib>Saito, Priscila Tiemi Maeda</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pereira, Douglas Felipe</au><au>Bugatti, Pedro Henrique</au><au>Lopes, Fabricio Martins</au><au>de Souza, Andre Luis Siqueira Marques</au><au>Saito, Priscila Tiemi Maeda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing Active Learning Strategies to Improve the Quality Control of the Soybean Seed Vigor</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>68</volume><issue>2</issue><spage>1675</spage><epage>1683</epage><pages>1675-1683</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Seed companies increasingly seek excellence in production quality through rigorous processes, such as the tetrazolium test (TZ test) and the vigor definition. However, these are extremely laborious processes since it necessitates the experience of a specialist and the visual analysis of a considerable quantity of seeds as sampling for determining the vigor of the seed lot.Moreover, although the TZ test has a defined protocol, this analysis may vary from analyst to analyst because it is a subjective human process. In this context, several efforts have been carried out in an attempt to automate the analysis process, in order to reduce their intrinsic problems. Thus, this article presents approaches for the learning and classification of the soybean seed vigor. In addition, alternative active learning strategies are proposed to improve the selection of the most informative samples for the learning process. An extensive experimental evaluation is performed considering different datasets and state-of-the-art learning techniques. Based on the obtained results, it is possible to observe that active learning approaches lead to more robust classifiers, which reach higher accuracies faster (in less learning iterations) than traditional supervised learning approaches. We also obtained a reduction of <inline-formula><tex-math notation="LaTeX">\text{95.22}{\%}</tex-math></inline-formula> of labeled samples used in the learning process.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2020.2969106</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1234-2860</orcidid><orcidid>https://orcid.org/0000-0001-9421-9254</orcidid><orcidid>https://orcid.org/0000-0002-4870-4766</orcidid><orcidid>https://orcid.org/0000-0002-8786-3313</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2021-02, Vol.68 (2), p.1675-1683 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_ieee_primary_8974615 |
source | IEEE Electronic Library (IEL) |
subjects | Active learning Annotations Classification image analysis machine learning Organizations Pipelines Proposals Quality control Soybeans Supervised learning tetrazolium test (TZ test) Training Uncertainty |
title | Assessing Active Learning Strategies to Improve the Quality Control of the Soybean Seed Vigor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A25%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20Active%20Learning%20Strategies%20to%20Improve%20the%20Quality%20Control%20of%20the%20Soybean%20Seed%20Vigor&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Pereira,%20Douglas%20Felipe&rft.date=2021-02-01&rft.volume=68&rft.issue=2&rft.spage=1675&rft.epage=1683&rft.pages=1675-1683&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2020.2969106&rft_dat=%3Cproquest_RIE%3E2457972752%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457972752&rft_id=info:pmid/&rft_ieee_id=8974615&rfr_iscdi=true |