Automatic Normal Positioning of Robotic Ultrasound Probe Based Only on Confidence Map Optimization and Force Measurement
Acquiring good image quality is one of the main challenges for fully-automatic robot-assisted ultrasound systems (RUSS). The presented method aims at overcoming this challenge for orthopaedic applications by optimizing the orientation of the robotic ultrasound (US) probe, i.e. aligning the central a...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2020-04, Vol.5 (2), p.1341-1348 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1348 |
---|---|
container_issue | 2 |
container_start_page | 1341 |
container_title | IEEE robotics and automation letters |
container_volume | 5 |
creator | Jiang, Zhongliang Grimm, Matthias Zhou, Mingchuan Esteban, Javier Simson, Walter Zahnd, Guillaume Navab, Nassir |
description | Acquiring good image quality is one of the main challenges for fully-automatic robot-assisted ultrasound systems (RUSS). The presented method aims at overcoming this challenge for orthopaedic applications by optimizing the orientation of the robotic ultrasound (US) probe, i.e. aligning the central axis of the US probe to the tissue's surface normal at the point of contact in order to improve sound propagation within the tissue. We first optimize the in-plane orientation of the probe by analyzing the confidence map of the US image. We then carry out a fan motion and analyze the resulting forces estimated from joint torques to align the central axis of the probe to the normal within the plane orthogonal to the initial image plane. This results in the final 3D alignment of the probe's main axis with the normal to the anatomical surface at the point of contact without using external sensors for surface reconstruction or localizing the point of contact in an anatomical atlas. The algorithm is evaluated both on a phantom and on human tissues (forearm, upper arm and lower back). The mean absolute angular difference (±STD) between true and estimated normal on stationary phantom, forearm, upper arm and lower back was 3.1 ± 1.0°, 3.7 ± 1.7°, 5.3 ± 1.3° and 6.9 ± 3.5°, respectively. In comparison, six human operators obtained errors of 3.2 ± 1.7° on the phantom. Hence the method is able to automatically position the probe normal to the scanned tissue at the point of contact and thus improve the quality of automatically acquired ultrasound images. |
doi_str_mv | 10.1109/LRA.2020.2967682 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8963620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8963620</ieee_id><sourcerecordid>2352194005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-d3cba5aa0d82c76f61bd59cb2327bc5c64a526eba8bd39654f9c531c532aa0ce3</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOObugpeA5878WJL2OIdTYbox3LkkaSoZbTKTFJx_vS0b4uHxHnx_PPgAcIvRFGNUPKy28ylBBE1JwQXPyQUYESpERgXnl__uazCJcY8QwowIWrAR-J53ybcyWQ3ffWhlAzc-2mS9s-4T-hpuvfKDumtSkNF3roKb4JWBjzKaCq5dc4TewYV3ta2M0wa-yQNcH5Jt7Y8ciqDsM0sfBsnI2AXTGpduwFUtm2gm5z0Gu-XTx-IlW62fXxfzVaYpEymrqFaSSYmqnGjBa45VxQqtCCVCaab5TDLCjZK5qmjB2awuNKO4H9KHtKFjcH_qPQT_1ZmYyr3vgutfloQygosZQqx3oZNLBx9jMHV5CLaV4VhiVA6Iyx5xOSAuz4j7yN0pYo0xf_a84JQTRH8BdqF5Dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352194005</pqid></control><display><type>article</type><title>Automatic Normal Positioning of Robotic Ultrasound Probe Based Only on Confidence Map Optimization and Force Measurement</title><source>IEEE Electronic Library (IEL)</source><creator>Jiang, Zhongliang ; Grimm, Matthias ; Zhou, Mingchuan ; Esteban, Javier ; Simson, Walter ; Zahnd, Guillaume ; Navab, Nassir</creator><creatorcontrib>Jiang, Zhongliang ; Grimm, Matthias ; Zhou, Mingchuan ; Esteban, Javier ; Simson, Walter ; Zahnd, Guillaume ; Navab, Nassir</creatorcontrib><description>Acquiring good image quality is one of the main challenges for fully-automatic robot-assisted ultrasound systems (RUSS). The presented method aims at overcoming this challenge for orthopaedic applications by optimizing the orientation of the robotic ultrasound (US) probe, i.e. aligning the central axis of the US probe to the tissue's surface normal at the point of contact in order to improve sound propagation within the tissue. We first optimize the in-plane orientation of the probe by analyzing the confidence map of the US image. We then carry out a fan motion and analyze the resulting forces estimated from joint torques to align the central axis of the probe to the normal within the plane orthogonal to the initial image plane. This results in the final 3D alignment of the probe's main axis with the normal to the anatomical surface at the point of contact without using external sensors for surface reconstruction or localizing the point of contact in an anatomical atlas. The algorithm is evaluated both on a phantom and on human tissues (forearm, upper arm and lower back). The mean absolute angular difference (±STD) between true and estimated normal on stationary phantom, forearm, upper arm and lower back was 3.1 ± 1.0°, 3.7 ± 1.7°, 5.3 ± 1.3° and 6.9 ± 3.5°, respectively. In comparison, six human operators obtained errors of 3.2 ± 1.7° on the phantom. Hence the method is able to automatically position the probe normal to the scanned tissue at the point of contact and thus improve the quality of automatically acquired ultrasound images.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2020.2967682</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Alignment ; force and tactile sensing ; Force measurement ; Forearm ; Human tissues ; Image acquisition ; Image quality ; Image reconstruction ; Medical robots and systems ; Optimization ; Orthopedics ; robotic ultrasound ; Sound propagation ; Ultrasonic imaging ; Ultrasound</subject><ispartof>IEEE robotics and automation letters, 2020-04, Vol.5 (2), p.1341-1348</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-d3cba5aa0d82c76f61bd59cb2327bc5c64a526eba8bd39654f9c531c532aa0ce3</citedby><cites>FETCH-LOGICAL-c357t-d3cba5aa0d82c76f61bd59cb2327bc5c64a526eba8bd39654f9c531c532aa0ce3</cites><orcidid>0000-0002-3433-4020 ; 0000-0002-3017-4875 ; 0000-0003-2258-3158 ; 0000-0001-7461-2200 ; 0000-0002-6944-1483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8963620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8963620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiang, Zhongliang</creatorcontrib><creatorcontrib>Grimm, Matthias</creatorcontrib><creatorcontrib>Zhou, Mingchuan</creatorcontrib><creatorcontrib>Esteban, Javier</creatorcontrib><creatorcontrib>Simson, Walter</creatorcontrib><creatorcontrib>Zahnd, Guillaume</creatorcontrib><creatorcontrib>Navab, Nassir</creatorcontrib><title>Automatic Normal Positioning of Robotic Ultrasound Probe Based Only on Confidence Map Optimization and Force Measurement</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Acquiring good image quality is one of the main challenges for fully-automatic robot-assisted ultrasound systems (RUSS). The presented method aims at overcoming this challenge for orthopaedic applications by optimizing the orientation of the robotic ultrasound (US) probe, i.e. aligning the central axis of the US probe to the tissue's surface normal at the point of contact in order to improve sound propagation within the tissue. We first optimize the in-plane orientation of the probe by analyzing the confidence map of the US image. We then carry out a fan motion and analyze the resulting forces estimated from joint torques to align the central axis of the probe to the normal within the plane orthogonal to the initial image plane. This results in the final 3D alignment of the probe's main axis with the normal to the anatomical surface at the point of contact without using external sensors for surface reconstruction or localizing the point of contact in an anatomical atlas. The algorithm is evaluated both on a phantom and on human tissues (forearm, upper arm and lower back). The mean absolute angular difference (±STD) between true and estimated normal on stationary phantom, forearm, upper arm and lower back was 3.1 ± 1.0°, 3.7 ± 1.7°, 5.3 ± 1.3° and 6.9 ± 3.5°, respectively. In comparison, six human operators obtained errors of 3.2 ± 1.7° on the phantom. Hence the method is able to automatically position the probe normal to the scanned tissue at the point of contact and thus improve the quality of automatically acquired ultrasound images.</description><subject>Algorithms</subject><subject>Alignment</subject><subject>force and tactile sensing</subject><subject>Force measurement</subject><subject>Forearm</subject><subject>Human tissues</subject><subject>Image acquisition</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Medical robots and systems</subject><subject>Optimization</subject><subject>Orthopedics</subject><subject>robotic ultrasound</subject><subject>Sound propagation</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUx4MoOObugpeA5878WJL2OIdTYbox3LkkaSoZbTKTFJx_vS0b4uHxHnx_PPgAcIvRFGNUPKy28ylBBE1JwQXPyQUYESpERgXnl__uazCJcY8QwowIWrAR-J53ybcyWQ3ffWhlAzc-2mS9s-4T-hpuvfKDumtSkNF3roKb4JWBjzKaCq5dc4TewYV3ta2M0wa-yQNcH5Jt7Y8ciqDsM0sfBsnI2AXTGpduwFUtm2gm5z0Gu-XTx-IlW62fXxfzVaYpEymrqFaSSYmqnGjBa45VxQqtCCVCaab5TDLCjZK5qmjB2awuNKO4H9KHtKFjcH_qPQT_1ZmYyr3vgutfloQygosZQqx3oZNLBx9jMHV5CLaV4VhiVA6Iyx5xOSAuz4j7yN0pYo0xf_a84JQTRH8BdqF5Dg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Jiang, Zhongliang</creator><creator>Grimm, Matthias</creator><creator>Zhou, Mingchuan</creator><creator>Esteban, Javier</creator><creator>Simson, Walter</creator><creator>Zahnd, Guillaume</creator><creator>Navab, Nassir</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3433-4020</orcidid><orcidid>https://orcid.org/0000-0002-3017-4875</orcidid><orcidid>https://orcid.org/0000-0003-2258-3158</orcidid><orcidid>https://orcid.org/0000-0001-7461-2200</orcidid><orcidid>https://orcid.org/0000-0002-6944-1483</orcidid></search><sort><creationdate>20200401</creationdate><title>Automatic Normal Positioning of Robotic Ultrasound Probe Based Only on Confidence Map Optimization and Force Measurement</title><author>Jiang, Zhongliang ; Grimm, Matthias ; Zhou, Mingchuan ; Esteban, Javier ; Simson, Walter ; Zahnd, Guillaume ; Navab, Nassir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-d3cba5aa0d82c76f61bd59cb2327bc5c64a526eba8bd39654f9c531c532aa0ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>force and tactile sensing</topic><topic>Force measurement</topic><topic>Forearm</topic><topic>Human tissues</topic><topic>Image acquisition</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Medical robots and systems</topic><topic>Optimization</topic><topic>Orthopedics</topic><topic>robotic ultrasound</topic><topic>Sound propagation</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Zhongliang</creatorcontrib><creatorcontrib>Grimm, Matthias</creatorcontrib><creatorcontrib>Zhou, Mingchuan</creatorcontrib><creatorcontrib>Esteban, Javier</creatorcontrib><creatorcontrib>Simson, Walter</creatorcontrib><creatorcontrib>Zahnd, Guillaume</creatorcontrib><creatorcontrib>Navab, Nassir</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Zhongliang</au><au>Grimm, Matthias</au><au>Zhou, Mingchuan</au><au>Esteban, Javier</au><au>Simson, Walter</au><au>Zahnd, Guillaume</au><au>Navab, Nassir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Normal Positioning of Robotic Ultrasound Probe Based Only on Confidence Map Optimization and Force Measurement</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>5</volume><issue>2</issue><spage>1341</spage><epage>1348</epage><pages>1341-1348</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Acquiring good image quality is one of the main challenges for fully-automatic robot-assisted ultrasound systems (RUSS). The presented method aims at overcoming this challenge for orthopaedic applications by optimizing the orientation of the robotic ultrasound (US) probe, i.e. aligning the central axis of the US probe to the tissue's surface normal at the point of contact in order to improve sound propagation within the tissue. We first optimize the in-plane orientation of the probe by analyzing the confidence map of the US image. We then carry out a fan motion and analyze the resulting forces estimated from joint torques to align the central axis of the probe to the normal within the plane orthogonal to the initial image plane. This results in the final 3D alignment of the probe's main axis with the normal to the anatomical surface at the point of contact without using external sensors for surface reconstruction or localizing the point of contact in an anatomical atlas. The algorithm is evaluated both on a phantom and on human tissues (forearm, upper arm and lower back). The mean absolute angular difference (±STD) between true and estimated normal on stationary phantom, forearm, upper arm and lower back was 3.1 ± 1.0°, 3.7 ± 1.7°, 5.3 ± 1.3° and 6.9 ± 3.5°, respectively. In comparison, six human operators obtained errors of 3.2 ± 1.7° on the phantom. Hence the method is able to automatically position the probe normal to the scanned tissue at the point of contact and thus improve the quality of automatically acquired ultrasound images.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2020.2967682</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3433-4020</orcidid><orcidid>https://orcid.org/0000-0002-3017-4875</orcidid><orcidid>https://orcid.org/0000-0003-2258-3158</orcidid><orcidid>https://orcid.org/0000-0001-7461-2200</orcidid><orcidid>https://orcid.org/0000-0002-6944-1483</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2020-04, Vol.5 (2), p.1341-1348 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_8963620 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Alignment force and tactile sensing Force measurement Forearm Human tissues Image acquisition Image quality Image reconstruction Medical robots and systems Optimization Orthopedics robotic ultrasound Sound propagation Ultrasonic imaging Ultrasound |
title | Automatic Normal Positioning of Robotic Ultrasound Probe Based Only on Confidence Map Optimization and Force Measurement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Normal%20Positioning%20of%20Robotic%20Ultrasound%20Probe%20Based%20Only%20on%20Confidence%20Map%20Optimization%20and%20Force%20Measurement&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Jiang,%20Zhongliang&rft.date=2020-04-01&rft.volume=5&rft.issue=2&rft.spage=1341&rft.epage=1348&rft.pages=1341-1348&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2020.2967682&rft_dat=%3Cproquest_RIE%3E2352194005%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352194005&rft_id=info:pmid/&rft_ieee_id=8963620&rfr_iscdi=true |