Optimizing FPGA Logic Circuitry for Variable Voltage Supplies

Unlike central processing units (CPUs), field-programmable gate arrays (FPGAs) have conventionally been powered with a fixed supply voltage ( V_{\text {dd}} ). However, recent efforts have shown that adopting dynamic voltage scaling reduces FPGA power consumption significantly. In this article, we a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2020-04, Vol.28 (4), p.890-903
Hauptverfasser: Ahmed, Ibrahim, Shen, Linda L., Betz, Vaughn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 903
container_issue 4
container_start_page 890
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 28
creator Ahmed, Ibrahim
Shen, Linda L.
Betz, Vaughn
description Unlike central processing units (CPUs), field-programmable gate arrays (FPGAs) have conventionally been powered with a fixed supply voltage ( V_{\text {dd}} ). However, recent efforts have shown that adopting dynamic voltage scaling reduces FPGA power consumption significantly. In this article, we analyze the delay sensitivity of different FPGA circuit elements to supply voltage changes and determine that conventional lookup table (LUT) designs greatly impact variable {V_{\text {dd}}} operation. To build FPGAs with lower delay sensitivity to {V_{\text {dd}}} , we propose several new LUT designs, including gate boosting the LUT, decoding the slowest two inputs of the LUT, and using separate voltage islands for the FPGA LUTs and routing. Our fastest proposed design (decode-driver island) reduces the area-delay product of the FPGA logic plus routing tile compared to a conventional design by 12% and 52% at {V_{\text {dd}}} values of 0.8 V (the nominal voltage) and 0.6 V, respectively. Since our proposed FPGA tile designs are faster and have lower delay sensitivity to voltage, they offer better {\text {Energy-Delay} {{^{\mathrm{ 2}}} product ( {\text {ED} {{^{\mathrm{ 2}}} ) than that of the baseline at nominal {V_{\text {dd}}} and below. Our decode-driver-island FPGA achieves a 26% {\text {ED} {{^{\mathrm{ 2}}} reduction over the conventional design at the most efficient {\text {ED} {{^{\mathrm{ 2}}} operating point.
doi_str_mv 10.1109/TVLSI.2019.2962501
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8959356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8959356</ieee_id><sourcerecordid>2381788352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-f3c67dac57fe9b4d250d84f2dce9df2ce01792208ff58acd271631eebbed95e53</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhoMoWKt_QC8Bj5K6H9lk9-ChBFsLhQqtvS7JZrZsSbNxkyD117s1olfnMnN4npnhDYJbjCYYI_G42S7XiwlBWEyISAhD-CwYYcbSSPg69zNKaMQJRpfBVdvuEcJxLNAoeFo1nTmYT1PvwtnrfBou7c6oMDNO9aZzx1BbF25zZ_KignBrqy7fQbjum6Yy0F4HFzqvWrj56ePgbfa8yV6i5Wq-yKbLSBHBukhTlaRlrliqQRRx6f8reaxJqUCUmihAOBWEIK4147kqSYoTigGKAkrBgNFxcD_sbZx976Ht5N72rvYnJaEcp5xTRjxFBko527YOtGycOeTuKDGSp5jkd0zyFJP8iclLD4P0AYXVrTJQK_gVEUKMkJjg1E8o9jT_P52ZLu-MrTPb151X7wbVAPwpXDBBWUK_AB4IhHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2381788352</pqid></control><display><type>article</type><title>Optimizing FPGA Logic Circuitry for Variable Voltage Supplies</title><source>IEEE Electronic Library (IEL)</source><creator>Ahmed, Ibrahim ; Shen, Linda L. ; Betz, Vaughn</creator><creatorcontrib>Ahmed, Ibrahim ; Shen, Linda L. ; Betz, Vaughn</creatorcontrib><description><![CDATA[Unlike central processing units (CPUs), field-programmable gate arrays (FPGAs) have conventionally been powered with a fixed supply voltage (<inline-formula> <tex-math notation="LaTeX">V_{\text {dd}} </tex-math></inline-formula>). However, recent efforts have shown that adopting dynamic voltage scaling reduces FPGA power consumption significantly. In this article, we analyze the delay sensitivity of different FPGA circuit elements to supply voltage changes and determine that conventional lookup table (LUT) designs greatly impact variable <inline-formula> <tex-math notation="LaTeX">{V_{\text {dd}}} </tex-math></inline-formula> operation. To build FPGAs with lower delay sensitivity to <inline-formula> <tex-math notation="LaTeX">{V_{\text {dd}}} </tex-math></inline-formula>, we propose several new LUT designs, including gate boosting the LUT, decoding the slowest two inputs of the LUT, and using separate voltage islands for the FPGA LUTs and routing. Our fastest proposed design (decode-driver island) reduces the area-delay product of the FPGA logic plus routing tile compared to a conventional design by 12% and 52% at <inline-formula> <tex-math notation="LaTeX">{V_{\text {dd}}} </tex-math></inline-formula> values of 0.8 V (the nominal voltage) and 0.6 V, respectively. Since our proposed FPGA tile designs are faster and have lower delay sensitivity to voltage, they offer better <inline-formula> <tex-math notation="LaTeX">{\text {Energy-Delay} {{^{\mathrm{ 2}}} </tex-math></inline-formula> product (<inline-formula> <tex-math notation="LaTeX">{\text {ED} {{^{\mathrm{ 2}}} </tex-math></inline-formula>) than that of the baseline at nominal <inline-formula> <tex-math notation="LaTeX">{V_{\text {dd}}} </tex-math></inline-formula> and below. Our decode-driver-island FPGA achieves a 26% <inline-formula> <tex-math notation="LaTeX">{\text {ED} {{^{\mathrm{ 2}}} </tex-math></inline-formula> reduction over the conventional design at the most efficient <inline-formula> <tex-math notation="LaTeX">{\text {ED} {{^{\mathrm{ 2}}} </tex-math></inline-formula> operating point.]]></description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2019.2962501</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Central processing units ; Circuits ; Computer Science ; Computer Science, Hardware &amp; Architecture ; CPUs ; Delay ; Delays ; Dynamic voltage scaling (DVS) ; Electric potential ; Engineering ; Engineering, Electrical &amp; Electronic ; Field programmable gate arrays ; field programmable gate arrays (FPGAs) ; Logic gates ; Lookup tables ; Multiplexing ; Power consumption ; Routing ; Science &amp; Technology ; Sensitivity analysis ; Table lookup ; Technology ; Transistors ; Voltage</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2020-04, Vol.28 (4), p.890-903</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000522421700004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c295t-f3c67dac57fe9b4d250d84f2dce9df2ce01792208ff58acd271631eebbed95e53</citedby><cites>FETCH-LOGICAL-c295t-f3c67dac57fe9b4d250d84f2dce9df2ce01792208ff58acd271631eebbed95e53</cites><orcidid>0000-0003-2696-3086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8959356$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,28257,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8959356$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahmed, Ibrahim</creatorcontrib><creatorcontrib>Shen, Linda L.</creatorcontrib><creatorcontrib>Betz, Vaughn</creatorcontrib><title>Optimizing FPGA Logic Circuitry for Variable Voltage Supplies</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><addtitle>IEEE T VLSI SYST</addtitle><description><![CDATA[Unlike central processing units (CPUs), field-programmable gate arrays (FPGAs) have conventionally been powered with a fixed supply voltage (<inline-formula> <tex-math notation="LaTeX">V_{\text {dd}} </tex-math></inline-formula>). However, recent efforts have shown that adopting dynamic voltage scaling reduces FPGA power consumption significantly. In this article, we analyze the delay sensitivity of different FPGA circuit elements to supply voltage changes and determine that conventional lookup table (LUT) designs greatly impact variable <inline-formula> <tex-math notation="LaTeX">{V_{\text {dd}}} </tex-math></inline-formula> operation. To build FPGAs with lower delay sensitivity to <inline-formula> <tex-math notation="LaTeX">{V_{\text {dd}}} </tex-math></inline-formula>, we propose several new LUT designs, including gate boosting the LUT, decoding the slowest two inputs of the LUT, and using separate voltage islands for the FPGA LUTs and routing. Our fastest proposed design (decode-driver island) reduces the area-delay product of the FPGA logic plus routing tile compared to a conventional design by 12% and 52% at <inline-formula> <tex-math notation="LaTeX">{V_{\text {dd}}} </tex-math></inline-formula> values of 0.8 V (the nominal voltage) and 0.6 V, respectively. Since our proposed FPGA tile designs are faster and have lower delay sensitivity to voltage, they offer better <inline-formula> <tex-math notation="LaTeX">{\text {Energy-Delay} {{^{\mathrm{ 2}}} </tex-math></inline-formula> product (<inline-formula> <tex-math notation="LaTeX">{\text {ED} {{^{\mathrm{ 2}}} </tex-math></inline-formula>) than that of the baseline at nominal <inline-formula> <tex-math notation="LaTeX">{V_{\text {dd}}} </tex-math></inline-formula> and below. Our decode-driver-island FPGA achieves a 26% <inline-formula> <tex-math notation="LaTeX">{\text {ED} {{^{\mathrm{ 2}}} </tex-math></inline-formula> reduction over the conventional design at the most efficient <inline-formula> <tex-math notation="LaTeX">{\text {ED} {{^{\mathrm{ 2}}} </tex-math></inline-formula> operating point.]]></description><subject>Central processing units</subject><subject>Circuits</subject><subject>Computer Science</subject><subject>Computer Science, Hardware &amp; Architecture</subject><subject>CPUs</subject><subject>Delay</subject><subject>Delays</subject><subject>Dynamic voltage scaling (DVS)</subject><subject>Electric potential</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Field programmable gate arrays</subject><subject>field programmable gate arrays (FPGAs)</subject><subject>Logic gates</subject><subject>Lookup tables</subject><subject>Multiplexing</subject><subject>Power consumption</subject><subject>Routing</subject><subject>Science &amp; Technology</subject><subject>Sensitivity analysis</subject><subject>Table lookup</subject><subject>Technology</subject><subject>Transistors</subject><subject>Voltage</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkE1Lw0AQhoMoWKt_QC8Bj5K6H9lk9-ChBFsLhQqtvS7JZrZsSbNxkyD117s1olfnMnN4npnhDYJbjCYYI_G42S7XiwlBWEyISAhD-CwYYcbSSPg69zNKaMQJRpfBVdvuEcJxLNAoeFo1nTmYT1PvwtnrfBou7c6oMDNO9aZzx1BbF25zZ_KignBrqy7fQbjum6Yy0F4HFzqvWrj56ePgbfa8yV6i5Wq-yKbLSBHBukhTlaRlrliqQRRx6f8reaxJqUCUmihAOBWEIK4147kqSYoTigGKAkrBgNFxcD_sbZx976Ht5N72rvYnJaEcp5xTRjxFBko527YOtGycOeTuKDGSp5jkd0zyFJP8iclLD4P0AYXVrTJQK_gVEUKMkJjg1E8o9jT_P52ZLu-MrTPb151X7wbVAPwpXDBBWUK_AB4IhHo</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Ahmed, Ibrahim</creator><creator>Shen, Linda L.</creator><creator>Betz, Vaughn</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2696-3086</orcidid></search><sort><creationdate>20200401</creationdate><title>Optimizing FPGA Logic Circuitry for Variable Voltage Supplies</title><author>Ahmed, Ibrahim ; Shen, Linda L. ; Betz, Vaughn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-f3c67dac57fe9b4d250d84f2dce9df2ce01792208ff58acd271631eebbed95e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Central processing units</topic><topic>Circuits</topic><topic>Computer Science</topic><topic>Computer Science, Hardware &amp; Architecture</topic><topic>CPUs</topic><topic>Delay</topic><topic>Delays</topic><topic>Dynamic voltage scaling (DVS)</topic><topic>Electric potential</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Field programmable gate arrays</topic><topic>field programmable gate arrays (FPGAs)</topic><topic>Logic gates</topic><topic>Lookup tables</topic><topic>Multiplexing</topic><topic>Power consumption</topic><topic>Routing</topic><topic>Science &amp; Technology</topic><topic>Sensitivity analysis</topic><topic>Table lookup</topic><topic>Technology</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Ibrahim</creatorcontrib><creatorcontrib>Shen, Linda L.</creatorcontrib><creatorcontrib>Betz, Vaughn</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmed, Ibrahim</au><au>Shen, Linda L.</au><au>Betz, Vaughn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing FPGA Logic Circuitry for Variable Voltage Supplies</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><stitle>IEEE T VLSI SYST</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>28</volume><issue>4</issue><spage>890</spage><epage>903</epage><pages>890-903</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract><![CDATA[Unlike central processing units (CPUs), field-programmable gate arrays (FPGAs) have conventionally been powered with a fixed supply voltage (<inline-formula> <tex-math notation="LaTeX">V_{\text {dd}} </tex-math></inline-formula>). However, recent efforts have shown that adopting dynamic voltage scaling reduces FPGA power consumption significantly. In this article, we analyze the delay sensitivity of different FPGA circuit elements to supply voltage changes and determine that conventional lookup table (LUT) designs greatly impact variable <inline-formula> <tex-math notation="LaTeX">{V_{\text {dd}}} </tex-math></inline-formula> operation. To build FPGAs with lower delay sensitivity to <inline-formula> <tex-math notation="LaTeX">{V_{\text {dd}}} </tex-math></inline-formula>, we propose several new LUT designs, including gate boosting the LUT, decoding the slowest two inputs of the LUT, and using separate voltage islands for the FPGA LUTs and routing. Our fastest proposed design (decode-driver island) reduces the area-delay product of the FPGA logic plus routing tile compared to a conventional design by 12% and 52% at <inline-formula> <tex-math notation="LaTeX">{V_{\text {dd}}} </tex-math></inline-formula> values of 0.8 V (the nominal voltage) and 0.6 V, respectively. Since our proposed FPGA tile designs are faster and have lower delay sensitivity to voltage, they offer better <inline-formula> <tex-math notation="LaTeX">{\text {Energy-Delay} {{^{\mathrm{ 2}}} </tex-math></inline-formula> product (<inline-formula> <tex-math notation="LaTeX">{\text {ED} {{^{\mathrm{ 2}}} </tex-math></inline-formula>) than that of the baseline at nominal <inline-formula> <tex-math notation="LaTeX">{V_{\text {dd}}} </tex-math></inline-formula> and below. Our decode-driver-island FPGA achieves a 26% <inline-formula> <tex-math notation="LaTeX">{\text {ED} {{^{\mathrm{ 2}}} </tex-math></inline-formula> reduction over the conventional design at the most efficient <inline-formula> <tex-math notation="LaTeX">{\text {ED} {{^{\mathrm{ 2}}} </tex-math></inline-formula> operating point.]]></abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2019.2962501</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2696-3086</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2020-04, Vol.28 (4), p.890-903
issn 1063-8210
1557-9999
language eng
recordid cdi_ieee_primary_8959356
source IEEE Electronic Library (IEL)
subjects Central processing units
Circuits
Computer Science
Computer Science, Hardware & Architecture
CPUs
Delay
Delays
Dynamic voltage scaling (DVS)
Electric potential
Engineering
Engineering, Electrical & Electronic
Field programmable gate arrays
field programmable gate arrays (FPGAs)
Logic gates
Lookup tables
Multiplexing
Power consumption
Routing
Science & Technology
Sensitivity analysis
Table lookup
Technology
Transistors
Voltage
title Optimizing FPGA Logic Circuitry for Variable Voltage Supplies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T13%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20FPGA%20Logic%20Circuitry%20for%20Variable%20Voltage%20Supplies&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Ahmed,%20Ibrahim&rft.date=2020-04-01&rft.volume=28&rft.issue=4&rft.spage=890&rft.epage=903&rft.pages=890-903&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2019.2962501&rft_dat=%3Cproquest_RIE%3E2381788352%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2381788352&rft_id=info:pmid/&rft_ieee_id=8959356&rfr_iscdi=true