Continuous Blood Pressure Measurement Platform: A Wearable System Based on Multidimensional Perception Data

The mobile crowd sensing technology in the environment integrating human, machines and things is an emerging direction in social computing. In kinematics research, continuous blood pressure monitoring and calibration are the basis for revealing the correlation between athlete motor function and bloo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.10147-10158
Hauptverfasser: Zhong, Dong, Yian, Zhu, Lanqing, Wang, Junhua, Duan, Jiaxuan, He
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10158
container_issue
container_start_page 10147
container_title IEEE access
container_volume 8
creator Zhong, Dong
Yian, Zhu
Lanqing, Wang
Junhua, Duan
Jiaxuan, He
description The mobile crowd sensing technology in the environment integrating human, machines and things is an emerging direction in social computing. In kinematics research, continuous blood pressure monitoring and calibration are the basis for revealing the correlation between athlete motor function and blood pressure. At the same time, in the field of medical research, hypertension can be more easily controlled, thus improving the effectiveness of hypertension treatment. This paper presents the design principle of a human-machine fusion system based on CrowdOS, a mobile crowd sensing platform. The system innovatively establishes the correlation between blood pressure and exercise, improves the accuracy of cuffless blood pressure measurement, and verifies the feasibility of calibrating continuous cuffless blood pressure measurement based on exercise information. Using our system and electronic cuff sphygmomanometer, we measured 65 groups of data in walking, running, sitting and climbing stairs, each group lasting about 10 minutes. Based on these data, we established a regression analysis model for blood pressure measurement calibration. The accuracy of blood pressure calibration was improved from the original systolic root mean square error of 13.43mmHg and diastolic root mean square error of 8.35mmHg to 9.76mmHg and 5.56mmHg. The design method proposed in this paper provides a feasible solution for continuous cuffless blood pressure measurement and calibration, and shows broad application prospects in the fields of athlete scientific training and medical care.
doi_str_mv 10.1109/ACCESS.2020.2965245
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8954647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8954647</ieee_id><doaj_id>oai_doaj_org_article_319ece877bc14fc6867488d33572fce1</doaj_id><sourcerecordid>2454716805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-603793f1ecaf878e7689b8c3ea1cf39bf45c5191a9f9a0a563cf11b13187cb8b3</originalsourceid><addsrcrecordid>eNpNUU1v2zAMNYoNaNH2F_QioOdkkmV97ZZ63VqgxQJkw44CLVOFM8fKJPnQfz9lLorxQvKB7xHkq6obRteMUfNp07b3u926pjVd10aKuhFn1UXNpFlxweWH_-rz6jqlPS2hCyTURfW7DVMepjnMidyNIfRkGzGlOSJ5RjjlA06ZbEfIPsTDZ7IhvxAidCOS3WvKeCB3kLAnYSLP85iHfiiENIQJRrLF6PCYS0O-QIar6qOHMeH1W76sfn69_9E-rJ6-f3tsN08r11CdV5JyZbhn6MBrpVFJbTrtOAJznpvON8IJZhgYb4CCkNx5xjrGmVau0x2_rB4X3T7A3h7jcID4agMM9h8Q4ouFmAc3ouXMoEOtVOdY453UUjVa95wLVXuHrGjdLlrHGP7MmLLdhzmW45Itf24Uk5qKMsWXKRdDShH9-1ZG7ckku5hkTybZN5MK62ZhDYj4ztBGNLJR_C-i-Y4k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454716805</pqid></control><display><type>article</type><title>Continuous Blood Pressure Measurement Platform: A Wearable System Based on Multidimensional Perception Data</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhong, Dong ; Yian, Zhu ; Lanqing, Wang ; Junhua, Duan ; Jiaxuan, He</creator><creatorcontrib>Zhong, Dong ; Yian, Zhu ; Lanqing, Wang ; Junhua, Duan ; Jiaxuan, He</creatorcontrib><description>The mobile crowd sensing technology in the environment integrating human, machines and things is an emerging direction in social computing. In kinematics research, continuous blood pressure monitoring and calibration are the basis for revealing the correlation between athlete motor function and blood pressure. At the same time, in the field of medical research, hypertension can be more easily controlled, thus improving the effectiveness of hypertension treatment. This paper presents the design principle of a human-machine fusion system based on CrowdOS, a mobile crowd sensing platform. The system innovatively establishes the correlation between blood pressure and exercise, improves the accuracy of cuffless blood pressure measurement, and verifies the feasibility of calibrating continuous cuffless blood pressure measurement based on exercise information. Using our system and electronic cuff sphygmomanometer, we measured 65 groups of data in walking, running, sitting and climbing stairs, each group lasting about 10 minutes. Based on these data, we established a regression analysis model for blood pressure measurement calibration. The accuracy of blood pressure calibration was improved from the original systolic root mean square error of 13.43mmHg and diastolic root mean square error of 8.35mmHg to 9.76mmHg and 5.56mmHg. The design method proposed in this paper provides a feasible solution for continuous cuffless blood pressure measurement and calibration, and shows broad application prospects in the fields of athlete scientific training and medical care.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2965245</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Biomedical monitoring ; Blood pressure ; blood pressure calibration ; blood pressure monitoring ; Calibration ; Feasibility ; Health services ; human-computer interaction ; Hypertension ; IoT ; Kinematics ; Mean square errors ; Medical research ; Monitoring ; Pressure measurement ; Regression analysis ; Regression models ; Root-mean-square errors ; Sensors ; Servers ; Task analysis ; Walking</subject><ispartof>IEEE access, 2020, Vol.8, p.10147-10158</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-603793f1ecaf878e7689b8c3ea1cf39bf45c5191a9f9a0a563cf11b13187cb8b3</citedby><cites>FETCH-LOGICAL-c408t-603793f1ecaf878e7689b8c3ea1cf39bf45c5191a9f9a0a563cf11b13187cb8b3</cites><orcidid>0000-0002-8008-2354 ; 0000-0003-2636-5238 ; 0000-0001-9970-6510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8954647$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27635,27925,27926,27927,54935</link.rule.ids></links><search><creatorcontrib>Zhong, Dong</creatorcontrib><creatorcontrib>Yian, Zhu</creatorcontrib><creatorcontrib>Lanqing, Wang</creatorcontrib><creatorcontrib>Junhua, Duan</creatorcontrib><creatorcontrib>Jiaxuan, He</creatorcontrib><title>Continuous Blood Pressure Measurement Platform: A Wearable System Based on Multidimensional Perception Data</title><title>IEEE access</title><addtitle>Access</addtitle><description>The mobile crowd sensing technology in the environment integrating human, machines and things is an emerging direction in social computing. In kinematics research, continuous blood pressure monitoring and calibration are the basis for revealing the correlation between athlete motor function and blood pressure. At the same time, in the field of medical research, hypertension can be more easily controlled, thus improving the effectiveness of hypertension treatment. This paper presents the design principle of a human-machine fusion system based on CrowdOS, a mobile crowd sensing platform. The system innovatively establishes the correlation between blood pressure and exercise, improves the accuracy of cuffless blood pressure measurement, and verifies the feasibility of calibrating continuous cuffless blood pressure measurement based on exercise information. Using our system and electronic cuff sphygmomanometer, we measured 65 groups of data in walking, running, sitting and climbing stairs, each group lasting about 10 minutes. Based on these data, we established a regression analysis model for blood pressure measurement calibration. The accuracy of blood pressure calibration was improved from the original systolic root mean square error of 13.43mmHg and diastolic root mean square error of 8.35mmHg to 9.76mmHg and 5.56mmHg. The design method proposed in this paper provides a feasible solution for continuous cuffless blood pressure measurement and calibration, and shows broad application prospects in the fields of athlete scientific training and medical care.</description><subject>Accuracy</subject><subject>Biomedical monitoring</subject><subject>Blood pressure</subject><subject>blood pressure calibration</subject><subject>blood pressure monitoring</subject><subject>Calibration</subject><subject>Feasibility</subject><subject>Health services</subject><subject>human-computer interaction</subject><subject>Hypertension</subject><subject>IoT</subject><subject>Kinematics</subject><subject>Mean square errors</subject><subject>Medical research</subject><subject>Monitoring</subject><subject>Pressure measurement</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Root-mean-square errors</subject><subject>Sensors</subject><subject>Servers</subject><subject>Task analysis</subject><subject>Walking</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v2zAMNYoNaNH2F_QioOdkkmV97ZZ63VqgxQJkw44CLVOFM8fKJPnQfz9lLorxQvKB7xHkq6obRteMUfNp07b3u926pjVd10aKuhFn1UXNpFlxweWH_-rz6jqlPS2hCyTURfW7DVMepjnMidyNIfRkGzGlOSJ5RjjlA06ZbEfIPsTDZ7IhvxAidCOS3WvKeCB3kLAnYSLP85iHfiiENIQJRrLF6PCYS0O-QIar6qOHMeH1W76sfn69_9E-rJ6-f3tsN08r11CdV5JyZbhn6MBrpVFJbTrtOAJznpvON8IJZhgYb4CCkNx5xjrGmVau0x2_rB4X3T7A3h7jcID4agMM9h8Q4ouFmAc3ouXMoEOtVOdY453UUjVa95wLVXuHrGjdLlrHGP7MmLLdhzmW45Itf24Uk5qKMsWXKRdDShH9-1ZG7ckku5hkTybZN5MK62ZhDYj4ztBGNLJR_C-i-Y4k</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhong, Dong</creator><creator>Yian, Zhu</creator><creator>Lanqing, Wang</creator><creator>Junhua, Duan</creator><creator>Jiaxuan, He</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8008-2354</orcidid><orcidid>https://orcid.org/0000-0003-2636-5238</orcidid><orcidid>https://orcid.org/0000-0001-9970-6510</orcidid></search><sort><creationdate>2020</creationdate><title>Continuous Blood Pressure Measurement Platform: A Wearable System Based on Multidimensional Perception Data</title><author>Zhong, Dong ; Yian, Zhu ; Lanqing, Wang ; Junhua, Duan ; Jiaxuan, He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-603793f1ecaf878e7689b8c3ea1cf39bf45c5191a9f9a0a563cf11b13187cb8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Biomedical monitoring</topic><topic>Blood pressure</topic><topic>blood pressure calibration</topic><topic>blood pressure monitoring</topic><topic>Calibration</topic><topic>Feasibility</topic><topic>Health services</topic><topic>human-computer interaction</topic><topic>Hypertension</topic><topic>IoT</topic><topic>Kinematics</topic><topic>Mean square errors</topic><topic>Medical research</topic><topic>Monitoring</topic><topic>Pressure measurement</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Root-mean-square errors</topic><topic>Sensors</topic><topic>Servers</topic><topic>Task analysis</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Dong</creatorcontrib><creatorcontrib>Yian, Zhu</creatorcontrib><creatorcontrib>Lanqing, Wang</creatorcontrib><creatorcontrib>Junhua, Duan</creatorcontrib><creatorcontrib>Jiaxuan, He</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Dong</au><au>Yian, Zhu</au><au>Lanqing, Wang</au><au>Junhua, Duan</au><au>Jiaxuan, He</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Blood Pressure Measurement Platform: A Wearable System Based on Multidimensional Perception Data</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>10147</spage><epage>10158</epage><pages>10147-10158</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The mobile crowd sensing technology in the environment integrating human, machines and things is an emerging direction in social computing. In kinematics research, continuous blood pressure monitoring and calibration are the basis for revealing the correlation between athlete motor function and blood pressure. At the same time, in the field of medical research, hypertension can be more easily controlled, thus improving the effectiveness of hypertension treatment. This paper presents the design principle of a human-machine fusion system based on CrowdOS, a mobile crowd sensing platform. The system innovatively establishes the correlation between blood pressure and exercise, improves the accuracy of cuffless blood pressure measurement, and verifies the feasibility of calibrating continuous cuffless blood pressure measurement based on exercise information. Using our system and electronic cuff sphygmomanometer, we measured 65 groups of data in walking, running, sitting and climbing stairs, each group lasting about 10 minutes. Based on these data, we established a regression analysis model for blood pressure measurement calibration. The accuracy of blood pressure calibration was improved from the original systolic root mean square error of 13.43mmHg and diastolic root mean square error of 8.35mmHg to 9.76mmHg and 5.56mmHg. The design method proposed in this paper provides a feasible solution for continuous cuffless blood pressure measurement and calibration, and shows broad application prospects in the fields of athlete scientific training and medical care.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2965245</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8008-2354</orcidid><orcidid>https://orcid.org/0000-0003-2636-5238</orcidid><orcidid>https://orcid.org/0000-0001-9970-6510</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.10147-10158
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8954647
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Biomedical monitoring
Blood pressure
blood pressure calibration
blood pressure monitoring
Calibration
Feasibility
Health services
human-computer interaction
Hypertension
IoT
Kinematics
Mean square errors
Medical research
Monitoring
Pressure measurement
Regression analysis
Regression models
Root-mean-square errors
Sensors
Servers
Task analysis
Walking
title Continuous Blood Pressure Measurement Platform: A Wearable System Based on Multidimensional Perception Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A31%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Blood%20Pressure%20Measurement%20Platform:%20A%20Wearable%20System%20Based%20on%20Multidimensional%20Perception%20Data&rft.jtitle=IEEE%20access&rft.au=Zhong,%20Dong&rft.date=2020&rft.volume=8&rft.spage=10147&rft.epage=10158&rft.pages=10147-10158&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2965245&rft_dat=%3Cproquest_ieee_%3E2454716805%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454716805&rft_id=info:pmid/&rft_ieee_id=8954647&rft_doaj_id=oai_doaj_org_article_319ece877bc14fc6867488d33572fce1&rfr_iscdi=true