Continuous Blood Pressure Measurement Platform: A Wearable System Based on Multidimensional Perception Data
The mobile crowd sensing technology in the environment integrating human, machines and things is an emerging direction in social computing. In kinematics research, continuous blood pressure monitoring and calibration are the basis for revealing the correlation between athlete motor function and bloo...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.10147-10158 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10158 |
---|---|
container_issue | |
container_start_page | 10147 |
container_title | IEEE access |
container_volume | 8 |
creator | Zhong, Dong Yian, Zhu Lanqing, Wang Junhua, Duan Jiaxuan, He |
description | The mobile crowd sensing technology in the environment integrating human, machines and things is an emerging direction in social computing. In kinematics research, continuous blood pressure monitoring and calibration are the basis for revealing the correlation between athlete motor function and blood pressure. At the same time, in the field of medical research, hypertension can be more easily controlled, thus improving the effectiveness of hypertension treatment. This paper presents the design principle of a human-machine fusion system based on CrowdOS, a mobile crowd sensing platform. The system innovatively establishes the correlation between blood pressure and exercise, improves the accuracy of cuffless blood pressure measurement, and verifies the feasibility of calibrating continuous cuffless blood pressure measurement based on exercise information. Using our system and electronic cuff sphygmomanometer, we measured 65 groups of data in walking, running, sitting and climbing stairs, each group lasting about 10 minutes. Based on these data, we established a regression analysis model for blood pressure measurement calibration. The accuracy of blood pressure calibration was improved from the original systolic root mean square error of 13.43mmHg and diastolic root mean square error of 8.35mmHg to 9.76mmHg and 5.56mmHg. The design method proposed in this paper provides a feasible solution for continuous cuffless blood pressure measurement and calibration, and shows broad application prospects in the fields of athlete scientific training and medical care. |
doi_str_mv | 10.1109/ACCESS.2020.2965245 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8954647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8954647</ieee_id><doaj_id>oai_doaj_org_article_319ece877bc14fc6867488d33572fce1</doaj_id><sourcerecordid>2454716805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-603793f1ecaf878e7689b8c3ea1cf39bf45c5191a9f9a0a563cf11b13187cb8b3</originalsourceid><addsrcrecordid>eNpNUU1v2zAMNYoNaNH2F_QioOdkkmV97ZZ63VqgxQJkw44CLVOFM8fKJPnQfz9lLorxQvKB7xHkq6obRteMUfNp07b3u926pjVd10aKuhFn1UXNpFlxweWH_-rz6jqlPS2hCyTURfW7DVMepjnMidyNIfRkGzGlOSJ5RjjlA06ZbEfIPsTDZ7IhvxAidCOS3WvKeCB3kLAnYSLP85iHfiiENIQJRrLF6PCYS0O-QIar6qOHMeH1W76sfn69_9E-rJ6-f3tsN08r11CdV5JyZbhn6MBrpVFJbTrtOAJznpvON8IJZhgYb4CCkNx5xjrGmVau0x2_rB4X3T7A3h7jcID4agMM9h8Q4ouFmAc3ouXMoEOtVOdY453UUjVa95wLVXuHrGjdLlrHGP7MmLLdhzmW45Itf24Uk5qKMsWXKRdDShH9-1ZG7ckku5hkTybZN5MK62ZhDYj4ztBGNLJR_C-i-Y4k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454716805</pqid></control><display><type>article</type><title>Continuous Blood Pressure Measurement Platform: A Wearable System Based on Multidimensional Perception Data</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhong, Dong ; Yian, Zhu ; Lanqing, Wang ; Junhua, Duan ; Jiaxuan, He</creator><creatorcontrib>Zhong, Dong ; Yian, Zhu ; Lanqing, Wang ; Junhua, Duan ; Jiaxuan, He</creatorcontrib><description>The mobile crowd sensing technology in the environment integrating human, machines and things is an emerging direction in social computing. In kinematics research, continuous blood pressure monitoring and calibration are the basis for revealing the correlation between athlete motor function and blood pressure. At the same time, in the field of medical research, hypertension can be more easily controlled, thus improving the effectiveness of hypertension treatment. This paper presents the design principle of a human-machine fusion system based on CrowdOS, a mobile crowd sensing platform. The system innovatively establishes the correlation between blood pressure and exercise, improves the accuracy of cuffless blood pressure measurement, and verifies the feasibility of calibrating continuous cuffless blood pressure measurement based on exercise information. Using our system and electronic cuff sphygmomanometer, we measured 65 groups of data in walking, running, sitting and climbing stairs, each group lasting about 10 minutes. Based on these data, we established a regression analysis model for blood pressure measurement calibration. The accuracy of blood pressure calibration was improved from the original systolic root mean square error of 13.43mmHg and diastolic root mean square error of 8.35mmHg to 9.76mmHg and 5.56mmHg. The design method proposed in this paper provides a feasible solution for continuous cuffless blood pressure measurement and calibration, and shows broad application prospects in the fields of athlete scientific training and medical care.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2965245</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Biomedical monitoring ; Blood pressure ; blood pressure calibration ; blood pressure monitoring ; Calibration ; Feasibility ; Health services ; human-computer interaction ; Hypertension ; IoT ; Kinematics ; Mean square errors ; Medical research ; Monitoring ; Pressure measurement ; Regression analysis ; Regression models ; Root-mean-square errors ; Sensors ; Servers ; Task analysis ; Walking</subject><ispartof>IEEE access, 2020, Vol.8, p.10147-10158</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-603793f1ecaf878e7689b8c3ea1cf39bf45c5191a9f9a0a563cf11b13187cb8b3</citedby><cites>FETCH-LOGICAL-c408t-603793f1ecaf878e7689b8c3ea1cf39bf45c5191a9f9a0a563cf11b13187cb8b3</cites><orcidid>0000-0002-8008-2354 ; 0000-0003-2636-5238 ; 0000-0001-9970-6510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8954647$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27635,27925,27926,27927,54935</link.rule.ids></links><search><creatorcontrib>Zhong, Dong</creatorcontrib><creatorcontrib>Yian, Zhu</creatorcontrib><creatorcontrib>Lanqing, Wang</creatorcontrib><creatorcontrib>Junhua, Duan</creatorcontrib><creatorcontrib>Jiaxuan, He</creatorcontrib><title>Continuous Blood Pressure Measurement Platform: A Wearable System Based on Multidimensional Perception Data</title><title>IEEE access</title><addtitle>Access</addtitle><description>The mobile crowd sensing technology in the environment integrating human, machines and things is an emerging direction in social computing. In kinematics research, continuous blood pressure monitoring and calibration are the basis for revealing the correlation between athlete motor function and blood pressure. At the same time, in the field of medical research, hypertension can be more easily controlled, thus improving the effectiveness of hypertension treatment. This paper presents the design principle of a human-machine fusion system based on CrowdOS, a mobile crowd sensing platform. The system innovatively establishes the correlation between blood pressure and exercise, improves the accuracy of cuffless blood pressure measurement, and verifies the feasibility of calibrating continuous cuffless blood pressure measurement based on exercise information. Using our system and electronic cuff sphygmomanometer, we measured 65 groups of data in walking, running, sitting and climbing stairs, each group lasting about 10 minutes. Based on these data, we established a regression analysis model for blood pressure measurement calibration. The accuracy of blood pressure calibration was improved from the original systolic root mean square error of 13.43mmHg and diastolic root mean square error of 8.35mmHg to 9.76mmHg and 5.56mmHg. The design method proposed in this paper provides a feasible solution for continuous cuffless blood pressure measurement and calibration, and shows broad application prospects in the fields of athlete scientific training and medical care.</description><subject>Accuracy</subject><subject>Biomedical monitoring</subject><subject>Blood pressure</subject><subject>blood pressure calibration</subject><subject>blood pressure monitoring</subject><subject>Calibration</subject><subject>Feasibility</subject><subject>Health services</subject><subject>human-computer interaction</subject><subject>Hypertension</subject><subject>IoT</subject><subject>Kinematics</subject><subject>Mean square errors</subject><subject>Medical research</subject><subject>Monitoring</subject><subject>Pressure measurement</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Root-mean-square errors</subject><subject>Sensors</subject><subject>Servers</subject><subject>Task analysis</subject><subject>Walking</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v2zAMNYoNaNH2F_QioOdkkmV97ZZ63VqgxQJkw44CLVOFM8fKJPnQfz9lLorxQvKB7xHkq6obRteMUfNp07b3u926pjVd10aKuhFn1UXNpFlxweWH_-rz6jqlPS2hCyTURfW7DVMepjnMidyNIfRkGzGlOSJ5RjjlA06ZbEfIPsTDZ7IhvxAidCOS3WvKeCB3kLAnYSLP85iHfiiENIQJRrLF6PCYS0O-QIar6qOHMeH1W76sfn69_9E-rJ6-f3tsN08r11CdV5JyZbhn6MBrpVFJbTrtOAJznpvON8IJZhgYb4CCkNx5xjrGmVau0x2_rB4X3T7A3h7jcID4agMM9h8Q4ouFmAc3ouXMoEOtVOdY453UUjVa95wLVXuHrGjdLlrHGP7MmLLdhzmW45Itf24Uk5qKMsWXKRdDShH9-1ZG7ckku5hkTybZN5MK62ZhDYj4ztBGNLJR_C-i-Y4k</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhong, Dong</creator><creator>Yian, Zhu</creator><creator>Lanqing, Wang</creator><creator>Junhua, Duan</creator><creator>Jiaxuan, He</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8008-2354</orcidid><orcidid>https://orcid.org/0000-0003-2636-5238</orcidid><orcidid>https://orcid.org/0000-0001-9970-6510</orcidid></search><sort><creationdate>2020</creationdate><title>Continuous Blood Pressure Measurement Platform: A Wearable System Based on Multidimensional Perception Data</title><author>Zhong, Dong ; Yian, Zhu ; Lanqing, Wang ; Junhua, Duan ; Jiaxuan, He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-603793f1ecaf878e7689b8c3ea1cf39bf45c5191a9f9a0a563cf11b13187cb8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Biomedical monitoring</topic><topic>Blood pressure</topic><topic>blood pressure calibration</topic><topic>blood pressure monitoring</topic><topic>Calibration</topic><topic>Feasibility</topic><topic>Health services</topic><topic>human-computer interaction</topic><topic>Hypertension</topic><topic>IoT</topic><topic>Kinematics</topic><topic>Mean square errors</topic><topic>Medical research</topic><topic>Monitoring</topic><topic>Pressure measurement</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Root-mean-square errors</topic><topic>Sensors</topic><topic>Servers</topic><topic>Task analysis</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Dong</creatorcontrib><creatorcontrib>Yian, Zhu</creatorcontrib><creatorcontrib>Lanqing, Wang</creatorcontrib><creatorcontrib>Junhua, Duan</creatorcontrib><creatorcontrib>Jiaxuan, He</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Dong</au><au>Yian, Zhu</au><au>Lanqing, Wang</au><au>Junhua, Duan</au><au>Jiaxuan, He</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Blood Pressure Measurement Platform: A Wearable System Based on Multidimensional Perception Data</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>10147</spage><epage>10158</epage><pages>10147-10158</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The mobile crowd sensing technology in the environment integrating human, machines and things is an emerging direction in social computing. In kinematics research, continuous blood pressure monitoring and calibration are the basis for revealing the correlation between athlete motor function and blood pressure. At the same time, in the field of medical research, hypertension can be more easily controlled, thus improving the effectiveness of hypertension treatment. This paper presents the design principle of a human-machine fusion system based on CrowdOS, a mobile crowd sensing platform. The system innovatively establishes the correlation between blood pressure and exercise, improves the accuracy of cuffless blood pressure measurement, and verifies the feasibility of calibrating continuous cuffless blood pressure measurement based on exercise information. Using our system and electronic cuff sphygmomanometer, we measured 65 groups of data in walking, running, sitting and climbing stairs, each group lasting about 10 minutes. Based on these data, we established a regression analysis model for blood pressure measurement calibration. The accuracy of blood pressure calibration was improved from the original systolic root mean square error of 13.43mmHg and diastolic root mean square error of 8.35mmHg to 9.76mmHg and 5.56mmHg. The design method proposed in this paper provides a feasible solution for continuous cuffless blood pressure measurement and calibration, and shows broad application prospects in the fields of athlete scientific training and medical care.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2965245</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8008-2354</orcidid><orcidid>https://orcid.org/0000-0003-2636-5238</orcidid><orcidid>https://orcid.org/0000-0001-9970-6510</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.10147-10158 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8954647 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Biomedical monitoring Blood pressure blood pressure calibration blood pressure monitoring Calibration Feasibility Health services human-computer interaction Hypertension IoT Kinematics Mean square errors Medical research Monitoring Pressure measurement Regression analysis Regression models Root-mean-square errors Sensors Servers Task analysis Walking |
title | Continuous Blood Pressure Measurement Platform: A Wearable System Based on Multidimensional Perception Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A31%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Blood%20Pressure%20Measurement%20Platform:%20A%20Wearable%20System%20Based%20on%20Multidimensional%20Perception%20Data&rft.jtitle=IEEE%20access&rft.au=Zhong,%20Dong&rft.date=2020&rft.volume=8&rft.spage=10147&rft.epage=10158&rft.pages=10147-10158&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2965245&rft_dat=%3Cproquest_ieee_%3E2454716805%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454716805&rft_id=info:pmid/&rft_ieee_id=8954647&rft_doaj_id=oai_doaj_org_article_319ece877bc14fc6867488d33572fce1&rfr_iscdi=true |