Receding Horizon Control for Drinking Water Networks: The Case for Geometric Programming

Optimal, network-driven control of water distribution networks (WDNs) is very difficult: valve and pump models form nontrivial, combinatorial logic; hydraulic models are nonconvex; water demand patterns are uncertain; and WDNs are naturally of large scale. Prior research on control of WDN addressed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control of network systems 2020-09, Vol.7 (3), p.1151-1163
Hauptverfasser: Wang, Shen, Taha, Ahmad F., Gatsis, Nikolaos, Giacomoni, Marcio H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1163
container_issue 3
container_start_page 1151
container_title IEEE transactions on control of network systems
container_volume 7
creator Wang, Shen
Taha, Ahmad F.
Gatsis, Nikolaos
Giacomoni, Marcio H.
description Optimal, network-driven control of water distribution networks (WDNs) is very difficult: valve and pump models form nontrivial, combinatorial logic; hydraulic models are nonconvex; water demand patterns are uncertain; and WDNs are naturally of large scale. Prior research on control of WDN addressed major research challenges, yet either i) adopted simplified hydraulic models, WDN topologies, and rudimentary valve/pump modeling or ii) used mixed-integer, nonconvex optimization to solve WDN control problems. The objective of this article is to develop tractable computational algorithms to manage WDN operation, while considering arbitrary topology, flow direction, an abundance of valve types, control objectives, hydraulic models, and operational constraints-all while only using convex, continuous optimization. Specifically, we propose new geometric programming (GP)-based model predictive control (MPC) algorithms, designed to solve the water flow equations and obtain WDN controls, i.e., pump/valve schedules alongside heads and flows. The proposed approach amounts to solving a series of convex optimization problems that graciously scale to large networks. The proposed approach is tested using a 126-node network with many valves and pumps and is shown to outperform traditional, rule-based control. The developed GP-based MPC algorithms, as well as the numerical test results, are all included on Github.
doi_str_mv 10.1109/TCNS.2020.2964139
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8950205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8950205</ieee_id><sourcerecordid>2442661611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e1d036f4c7dbbf0d48a289010d801ad721422eba6183a843e9736f149c3c2b4b3</originalsourceid><addsrcrecordid>eNpNkFFLwzAQx4MoOHQfQHwJ-NyZS9I29U2qbsKYohN9C2l7nd3WZiYdop_e1g3x6e643_8OfoScARsBsORyns6eR5xxNuJJJEEkB2TABQ-DUMXs8F9_TIbeLxljwMNuFgPy9oQ5FlWzoBPrqm_b0NQ2rbNrWlpHb1zVrPrlq2nR0Rm2n9at_BWdvyNNjcdfaoy2xtZVOX10duFMXXeRU3JUmrXH4b6ekJe723k6CaYP4_v0ehrkQkRtgFAwEZUyj4ssK1khleEqYcAKxcAUMQfJOWYmAiWMkgKTuMNBJrnIeSYzcUIudnc3zn5s0bd6abeu6V5qLiWPIogAOgp2VO6s9w5LvXFVbdyXBqZ7h7p3qHuHeu-wy5zvMhUi_vEqCTsoFD97CWxY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442661611</pqid></control><display><type>article</type><title>Receding Horizon Control for Drinking Water Networks: The Case for Geometric Programming</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Shen ; Taha, Ahmad F. ; Gatsis, Nikolaos ; Giacomoni, Marcio H.</creator><creatorcontrib>Wang, Shen ; Taha, Ahmad F. ; Gatsis, Nikolaos ; Giacomoni, Marcio H.</creatorcontrib><description>Optimal, network-driven control of water distribution networks (WDNs) is very difficult: valve and pump models form nontrivial, combinatorial logic; hydraulic models are nonconvex; water demand patterns are uncertain; and WDNs are naturally of large scale. Prior research on control of WDN addressed major research challenges, yet either i) adopted simplified hydraulic models, WDN topologies, and rudimentary valve/pump modeling or ii) used mixed-integer, nonconvex optimization to solve WDN control problems. The objective of this article is to develop tractable computational algorithms to manage WDN operation, while considering arbitrary topology, flow direction, an abundance of valve types, control objectives, hydraulic models, and operational constraints-all while only using convex, continuous optimization. Specifically, we propose new geometric programming (GP)-based model predictive control (MPC) algorithms, designed to solve the water flow equations and obtain WDN controls, i.e., pump/valve schedules alongside heads and flows. The proposed approach amounts to solving a series of convex optimization problems that graciously scale to large networks. The proposed approach is tested using a 126-node network with many valves and pumps and is shown to outperform traditional, rule-based control. The developed GP-based MPC algorithms, as well as the numerical test results, are all included on Github.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2020.2964139</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Biological system modeling ; Combinatorial analysis ; Computational geometry ; Constraint modelling ; Convexity ; Drinking water ; Flow equations ; Geometric programming ; Hydraulic models ; Hydraulics ; Mathematical model ; Mathematical programming ; Mixed integer ; model predictive control ; Network topologies ; Network topology ; Optimization ; Predictive control ; Programming ; pump and valve control ; Schedules ; Topology ; Valves ; Water distribution ; water distribution networks ; Water engineering ; Water flow</subject><ispartof>IEEE transactions on control of network systems, 2020-09, Vol.7 (3), p.1151-1163</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e1d036f4c7dbbf0d48a289010d801ad721422eba6183a843e9736f149c3c2b4b3</citedby><cites>FETCH-LOGICAL-c336t-e1d036f4c7dbbf0d48a289010d801ad721422eba6183a843e9736f149c3c2b4b3</cites><orcidid>0000-0002-4197-4501 ; 0000-0002-5238-649X ; 0000-0003-0486-2794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8950205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8950205$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Shen</creatorcontrib><creatorcontrib>Taha, Ahmad F.</creatorcontrib><creatorcontrib>Gatsis, Nikolaos</creatorcontrib><creatorcontrib>Giacomoni, Marcio H.</creatorcontrib><title>Receding Horizon Control for Drinking Water Networks: The Case for Geometric Programming</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>Optimal, network-driven control of water distribution networks (WDNs) is very difficult: valve and pump models form nontrivial, combinatorial logic; hydraulic models are nonconvex; water demand patterns are uncertain; and WDNs are naturally of large scale. Prior research on control of WDN addressed major research challenges, yet either i) adopted simplified hydraulic models, WDN topologies, and rudimentary valve/pump modeling or ii) used mixed-integer, nonconvex optimization to solve WDN control problems. The objective of this article is to develop tractable computational algorithms to manage WDN operation, while considering arbitrary topology, flow direction, an abundance of valve types, control objectives, hydraulic models, and operational constraints-all while only using convex, continuous optimization. Specifically, we propose new geometric programming (GP)-based model predictive control (MPC) algorithms, designed to solve the water flow equations and obtain WDN controls, i.e., pump/valve schedules alongside heads and flows. The proposed approach amounts to solving a series of convex optimization problems that graciously scale to large networks. The proposed approach is tested using a 126-node network with many valves and pumps and is shown to outperform traditional, rule-based control. The developed GP-based MPC algorithms, as well as the numerical test results, are all included on Github.</description><subject>Algorithms</subject><subject>Biological system modeling</subject><subject>Combinatorial analysis</subject><subject>Computational geometry</subject><subject>Constraint modelling</subject><subject>Convexity</subject><subject>Drinking water</subject><subject>Flow equations</subject><subject>Geometric programming</subject><subject>Hydraulic models</subject><subject>Hydraulics</subject><subject>Mathematical model</subject><subject>Mathematical programming</subject><subject>Mixed integer</subject><subject>model predictive control</subject><subject>Network topologies</subject><subject>Network topology</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Programming</subject><subject>pump and valve control</subject><subject>Schedules</subject><subject>Topology</subject><subject>Valves</subject><subject>Water distribution</subject><subject>water distribution networks</subject><subject>Water engineering</subject><subject>Water flow</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAQx4MoOHQfQHwJ-NyZS9I29U2qbsKYohN9C2l7nd3WZiYdop_e1g3x6e643_8OfoScARsBsORyns6eR5xxNuJJJEEkB2TABQ-DUMXs8F9_TIbeLxljwMNuFgPy9oQ5FlWzoBPrqm_b0NQ2rbNrWlpHb1zVrPrlq2nR0Rm2n9at_BWdvyNNjcdfaoy2xtZVOX10duFMXXeRU3JUmrXH4b6ekJe723k6CaYP4_v0ehrkQkRtgFAwEZUyj4ssK1khleEqYcAKxcAUMQfJOWYmAiWMkgKTuMNBJrnIeSYzcUIudnc3zn5s0bd6abeu6V5qLiWPIogAOgp2VO6s9w5LvXFVbdyXBqZ7h7p3qHuHeu-wy5zvMhUi_vEqCTsoFD97CWxY</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Wang, Shen</creator><creator>Taha, Ahmad F.</creator><creator>Gatsis, Nikolaos</creator><creator>Giacomoni, Marcio H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4197-4501</orcidid><orcidid>https://orcid.org/0000-0002-5238-649X</orcidid><orcidid>https://orcid.org/0000-0003-0486-2794</orcidid></search><sort><creationdate>20200901</creationdate><title>Receding Horizon Control for Drinking Water Networks: The Case for Geometric Programming</title><author>Wang, Shen ; Taha, Ahmad F. ; Gatsis, Nikolaos ; Giacomoni, Marcio H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e1d036f4c7dbbf0d48a289010d801ad721422eba6183a843e9736f149c3c2b4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biological system modeling</topic><topic>Combinatorial analysis</topic><topic>Computational geometry</topic><topic>Constraint modelling</topic><topic>Convexity</topic><topic>Drinking water</topic><topic>Flow equations</topic><topic>Geometric programming</topic><topic>Hydraulic models</topic><topic>Hydraulics</topic><topic>Mathematical model</topic><topic>Mathematical programming</topic><topic>Mixed integer</topic><topic>model predictive control</topic><topic>Network topologies</topic><topic>Network topology</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Programming</topic><topic>pump and valve control</topic><topic>Schedules</topic><topic>Topology</topic><topic>Valves</topic><topic>Water distribution</topic><topic>water distribution networks</topic><topic>Water engineering</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shen</creatorcontrib><creatorcontrib>Taha, Ahmad F.</creatorcontrib><creatorcontrib>Gatsis, Nikolaos</creatorcontrib><creatorcontrib>Giacomoni, Marcio H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Shen</au><au>Taha, Ahmad F.</au><au>Gatsis, Nikolaos</au><au>Giacomoni, Marcio H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Receding Horizon Control for Drinking Water Networks: The Case for Geometric Programming</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>7</volume><issue>3</issue><spage>1151</spage><epage>1163</epage><pages>1151-1163</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>Optimal, network-driven control of water distribution networks (WDNs) is very difficult: valve and pump models form nontrivial, combinatorial logic; hydraulic models are nonconvex; water demand patterns are uncertain; and WDNs are naturally of large scale. Prior research on control of WDN addressed major research challenges, yet either i) adopted simplified hydraulic models, WDN topologies, and rudimentary valve/pump modeling or ii) used mixed-integer, nonconvex optimization to solve WDN control problems. The objective of this article is to develop tractable computational algorithms to manage WDN operation, while considering arbitrary topology, flow direction, an abundance of valve types, control objectives, hydraulic models, and operational constraints-all while only using convex, continuous optimization. Specifically, we propose new geometric programming (GP)-based model predictive control (MPC) algorithms, designed to solve the water flow equations and obtain WDN controls, i.e., pump/valve schedules alongside heads and flows. The proposed approach amounts to solving a series of convex optimization problems that graciously scale to large networks. The proposed approach is tested using a 126-node network with many valves and pumps and is shown to outperform traditional, rule-based control. The developed GP-based MPC algorithms, as well as the numerical test results, are all included on Github.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCNS.2020.2964139</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4197-4501</orcidid><orcidid>https://orcid.org/0000-0002-5238-649X</orcidid><orcidid>https://orcid.org/0000-0003-0486-2794</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2325-5870
ispartof IEEE transactions on control of network systems, 2020-09, Vol.7 (3), p.1151-1163
issn 2325-5870
2325-5870
2372-2533
language eng
recordid cdi_ieee_primary_8950205
source IEEE Electronic Library (IEL)
subjects Algorithms
Biological system modeling
Combinatorial analysis
Computational geometry
Constraint modelling
Convexity
Drinking water
Flow equations
Geometric programming
Hydraulic models
Hydraulics
Mathematical model
Mathematical programming
Mixed integer
model predictive control
Network topologies
Network topology
Optimization
Predictive control
Programming
pump and valve control
Schedules
Topology
Valves
Water distribution
water distribution networks
Water engineering
Water flow
title Receding Horizon Control for Drinking Water Networks: The Case for Geometric Programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A40%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Receding%20Horizon%20Control%20for%20Drinking%20Water%20Networks:%20The%20Case%20for%20Geometric%20Programming&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Wang,%20Shen&rft.date=2020-09-01&rft.volume=7&rft.issue=3&rft.spage=1151&rft.epage=1163&rft.pages=1151-1163&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2020.2964139&rft_dat=%3Cproquest_RIE%3E2442661611%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442661611&rft_id=info:pmid/&rft_ieee_id=8950205&rfr_iscdi=true