Receding Horizon Control for Drinking Water Networks: The Case for Geometric Programming
Optimal, network-driven control of water distribution networks (WDNs) is very difficult: valve and pump models form nontrivial, combinatorial logic; hydraulic models are nonconvex; water demand patterns are uncertain; and WDNs are naturally of large scale. Prior research on control of WDN addressed...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control of network systems 2020-09, Vol.7 (3), p.1151-1163 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1163 |
---|---|
container_issue | 3 |
container_start_page | 1151 |
container_title | IEEE transactions on control of network systems |
container_volume | 7 |
creator | Wang, Shen Taha, Ahmad F. Gatsis, Nikolaos Giacomoni, Marcio H. |
description | Optimal, network-driven control of water distribution networks (WDNs) is very difficult: valve and pump models form nontrivial, combinatorial logic; hydraulic models are nonconvex; water demand patterns are uncertain; and WDNs are naturally of large scale. Prior research on control of WDN addressed major research challenges, yet either i) adopted simplified hydraulic models, WDN topologies, and rudimentary valve/pump modeling or ii) used mixed-integer, nonconvex optimization to solve WDN control problems. The objective of this article is to develop tractable computational algorithms to manage WDN operation, while considering arbitrary topology, flow direction, an abundance of valve types, control objectives, hydraulic models, and operational constraints-all while only using convex, continuous optimization. Specifically, we propose new geometric programming (GP)-based model predictive control (MPC) algorithms, designed to solve the water flow equations and obtain WDN controls, i.e., pump/valve schedules alongside heads and flows. The proposed approach amounts to solving a series of convex optimization problems that graciously scale to large networks. The proposed approach is tested using a 126-node network with many valves and pumps and is shown to outperform traditional, rule-based control. The developed GP-based MPC algorithms, as well as the numerical test results, are all included on Github. |
doi_str_mv | 10.1109/TCNS.2020.2964139 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8950205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8950205</ieee_id><sourcerecordid>2442661611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e1d036f4c7dbbf0d48a289010d801ad721422eba6183a843e9736f149c3c2b4b3</originalsourceid><addsrcrecordid>eNpNkFFLwzAQx4MoOHQfQHwJ-NyZS9I29U2qbsKYohN9C2l7nd3WZiYdop_e1g3x6e643_8OfoScARsBsORyns6eR5xxNuJJJEEkB2TABQ-DUMXs8F9_TIbeLxljwMNuFgPy9oQ5FlWzoBPrqm_b0NQ2rbNrWlpHb1zVrPrlq2nR0Rm2n9at_BWdvyNNjcdfaoy2xtZVOX10duFMXXeRU3JUmrXH4b6ekJe723k6CaYP4_v0ehrkQkRtgFAwEZUyj4ssK1khleEqYcAKxcAUMQfJOWYmAiWMkgKTuMNBJrnIeSYzcUIudnc3zn5s0bd6abeu6V5qLiWPIogAOgp2VO6s9w5LvXFVbdyXBqZ7h7p3qHuHeu-wy5zvMhUi_vEqCTsoFD97CWxY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442661611</pqid></control><display><type>article</type><title>Receding Horizon Control for Drinking Water Networks: The Case for Geometric Programming</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Shen ; Taha, Ahmad F. ; Gatsis, Nikolaos ; Giacomoni, Marcio H.</creator><creatorcontrib>Wang, Shen ; Taha, Ahmad F. ; Gatsis, Nikolaos ; Giacomoni, Marcio H.</creatorcontrib><description>Optimal, network-driven control of water distribution networks (WDNs) is very difficult: valve and pump models form nontrivial, combinatorial logic; hydraulic models are nonconvex; water demand patterns are uncertain; and WDNs are naturally of large scale. Prior research on control of WDN addressed major research challenges, yet either i) adopted simplified hydraulic models, WDN topologies, and rudimentary valve/pump modeling or ii) used mixed-integer, nonconvex optimization to solve WDN control problems. The objective of this article is to develop tractable computational algorithms to manage WDN operation, while considering arbitrary topology, flow direction, an abundance of valve types, control objectives, hydraulic models, and operational constraints-all while only using convex, continuous optimization. Specifically, we propose new geometric programming (GP)-based model predictive control (MPC) algorithms, designed to solve the water flow equations and obtain WDN controls, i.e., pump/valve schedules alongside heads and flows. The proposed approach amounts to solving a series of convex optimization problems that graciously scale to large networks. The proposed approach is tested using a 126-node network with many valves and pumps and is shown to outperform traditional, rule-based control. The developed GP-based MPC algorithms, as well as the numerical test results, are all included on Github.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2020.2964139</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Biological system modeling ; Combinatorial analysis ; Computational geometry ; Constraint modelling ; Convexity ; Drinking water ; Flow equations ; Geometric programming ; Hydraulic models ; Hydraulics ; Mathematical model ; Mathematical programming ; Mixed integer ; model predictive control ; Network topologies ; Network topology ; Optimization ; Predictive control ; Programming ; pump and valve control ; Schedules ; Topology ; Valves ; Water distribution ; water distribution networks ; Water engineering ; Water flow</subject><ispartof>IEEE transactions on control of network systems, 2020-09, Vol.7 (3), p.1151-1163</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e1d036f4c7dbbf0d48a289010d801ad721422eba6183a843e9736f149c3c2b4b3</citedby><cites>FETCH-LOGICAL-c336t-e1d036f4c7dbbf0d48a289010d801ad721422eba6183a843e9736f149c3c2b4b3</cites><orcidid>0000-0002-4197-4501 ; 0000-0002-5238-649X ; 0000-0003-0486-2794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8950205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8950205$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Shen</creatorcontrib><creatorcontrib>Taha, Ahmad F.</creatorcontrib><creatorcontrib>Gatsis, Nikolaos</creatorcontrib><creatorcontrib>Giacomoni, Marcio H.</creatorcontrib><title>Receding Horizon Control for Drinking Water Networks: The Case for Geometric Programming</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>Optimal, network-driven control of water distribution networks (WDNs) is very difficult: valve and pump models form nontrivial, combinatorial logic; hydraulic models are nonconvex; water demand patterns are uncertain; and WDNs are naturally of large scale. Prior research on control of WDN addressed major research challenges, yet either i) adopted simplified hydraulic models, WDN topologies, and rudimentary valve/pump modeling or ii) used mixed-integer, nonconvex optimization to solve WDN control problems. The objective of this article is to develop tractable computational algorithms to manage WDN operation, while considering arbitrary topology, flow direction, an abundance of valve types, control objectives, hydraulic models, and operational constraints-all while only using convex, continuous optimization. Specifically, we propose new geometric programming (GP)-based model predictive control (MPC) algorithms, designed to solve the water flow equations and obtain WDN controls, i.e., pump/valve schedules alongside heads and flows. The proposed approach amounts to solving a series of convex optimization problems that graciously scale to large networks. The proposed approach is tested using a 126-node network with many valves and pumps and is shown to outperform traditional, rule-based control. The developed GP-based MPC algorithms, as well as the numerical test results, are all included on Github.</description><subject>Algorithms</subject><subject>Biological system modeling</subject><subject>Combinatorial analysis</subject><subject>Computational geometry</subject><subject>Constraint modelling</subject><subject>Convexity</subject><subject>Drinking water</subject><subject>Flow equations</subject><subject>Geometric programming</subject><subject>Hydraulic models</subject><subject>Hydraulics</subject><subject>Mathematical model</subject><subject>Mathematical programming</subject><subject>Mixed integer</subject><subject>model predictive control</subject><subject>Network topologies</subject><subject>Network topology</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Programming</subject><subject>pump and valve control</subject><subject>Schedules</subject><subject>Topology</subject><subject>Valves</subject><subject>Water distribution</subject><subject>water distribution networks</subject><subject>Water engineering</subject><subject>Water flow</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAQx4MoOHQfQHwJ-NyZS9I29U2qbsKYohN9C2l7nd3WZiYdop_e1g3x6e643_8OfoScARsBsORyns6eR5xxNuJJJEEkB2TABQ-DUMXs8F9_TIbeLxljwMNuFgPy9oQ5FlWzoBPrqm_b0NQ2rbNrWlpHb1zVrPrlq2nR0Rm2n9at_BWdvyNNjcdfaoy2xtZVOX10duFMXXeRU3JUmrXH4b6ekJe723k6CaYP4_v0ehrkQkRtgFAwEZUyj4ssK1khleEqYcAKxcAUMQfJOWYmAiWMkgKTuMNBJrnIeSYzcUIudnc3zn5s0bd6abeu6V5qLiWPIogAOgp2VO6s9w5LvXFVbdyXBqZ7h7p3qHuHeu-wy5zvMhUi_vEqCTsoFD97CWxY</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Wang, Shen</creator><creator>Taha, Ahmad F.</creator><creator>Gatsis, Nikolaos</creator><creator>Giacomoni, Marcio H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4197-4501</orcidid><orcidid>https://orcid.org/0000-0002-5238-649X</orcidid><orcidid>https://orcid.org/0000-0003-0486-2794</orcidid></search><sort><creationdate>20200901</creationdate><title>Receding Horizon Control for Drinking Water Networks: The Case for Geometric Programming</title><author>Wang, Shen ; Taha, Ahmad F. ; Gatsis, Nikolaos ; Giacomoni, Marcio H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e1d036f4c7dbbf0d48a289010d801ad721422eba6183a843e9736f149c3c2b4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biological system modeling</topic><topic>Combinatorial analysis</topic><topic>Computational geometry</topic><topic>Constraint modelling</topic><topic>Convexity</topic><topic>Drinking water</topic><topic>Flow equations</topic><topic>Geometric programming</topic><topic>Hydraulic models</topic><topic>Hydraulics</topic><topic>Mathematical model</topic><topic>Mathematical programming</topic><topic>Mixed integer</topic><topic>model predictive control</topic><topic>Network topologies</topic><topic>Network topology</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Programming</topic><topic>pump and valve control</topic><topic>Schedules</topic><topic>Topology</topic><topic>Valves</topic><topic>Water distribution</topic><topic>water distribution networks</topic><topic>Water engineering</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shen</creatorcontrib><creatorcontrib>Taha, Ahmad F.</creatorcontrib><creatorcontrib>Gatsis, Nikolaos</creatorcontrib><creatorcontrib>Giacomoni, Marcio H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Shen</au><au>Taha, Ahmad F.</au><au>Gatsis, Nikolaos</au><au>Giacomoni, Marcio H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Receding Horizon Control for Drinking Water Networks: The Case for Geometric Programming</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>7</volume><issue>3</issue><spage>1151</spage><epage>1163</epage><pages>1151-1163</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>Optimal, network-driven control of water distribution networks (WDNs) is very difficult: valve and pump models form nontrivial, combinatorial logic; hydraulic models are nonconvex; water demand patterns are uncertain; and WDNs are naturally of large scale. Prior research on control of WDN addressed major research challenges, yet either i) adopted simplified hydraulic models, WDN topologies, and rudimentary valve/pump modeling or ii) used mixed-integer, nonconvex optimization to solve WDN control problems. The objective of this article is to develop tractable computational algorithms to manage WDN operation, while considering arbitrary topology, flow direction, an abundance of valve types, control objectives, hydraulic models, and operational constraints-all while only using convex, continuous optimization. Specifically, we propose new geometric programming (GP)-based model predictive control (MPC) algorithms, designed to solve the water flow equations and obtain WDN controls, i.e., pump/valve schedules alongside heads and flows. The proposed approach amounts to solving a series of convex optimization problems that graciously scale to large networks. The proposed approach is tested using a 126-node network with many valves and pumps and is shown to outperform traditional, rule-based control. The developed GP-based MPC algorithms, as well as the numerical test results, are all included on Github.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCNS.2020.2964139</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4197-4501</orcidid><orcidid>https://orcid.org/0000-0002-5238-649X</orcidid><orcidid>https://orcid.org/0000-0003-0486-2794</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2325-5870 |
ispartof | IEEE transactions on control of network systems, 2020-09, Vol.7 (3), p.1151-1163 |
issn | 2325-5870 2325-5870 2372-2533 |
language | eng |
recordid | cdi_ieee_primary_8950205 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Biological system modeling Combinatorial analysis Computational geometry Constraint modelling Convexity Drinking water Flow equations Geometric programming Hydraulic models Hydraulics Mathematical model Mathematical programming Mixed integer model predictive control Network topologies Network topology Optimization Predictive control Programming pump and valve control Schedules Topology Valves Water distribution water distribution networks Water engineering Water flow |
title | Receding Horizon Control for Drinking Water Networks: The Case for Geometric Programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A40%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Receding%20Horizon%20Control%20for%20Drinking%20Water%20Networks:%20The%20Case%20for%20Geometric%20Programming&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Wang,%20Shen&rft.date=2020-09-01&rft.volume=7&rft.issue=3&rft.spage=1151&rft.epage=1163&rft.pages=1151-1163&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2020.2964139&rft_dat=%3Cproquest_RIE%3E2442661611%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442661611&rft_id=info:pmid/&rft_ieee_id=8950205&rfr_iscdi=true |