Degradation Behavior and Mechanisms of E-Mode GaN HEMTs With p-GaN Gate Under Reverse Electrostatic Discharge Stress

The degradation behavior and its mechanisms of E-mode GaN high electron mobility transistors (HEMTs) with p-GaN gate under electrostatic discharge (ESD) stress were investigated. Reverse short-pulse stress was generated by a transmission line pulse (TLP) tester in order to simulate the static electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2020-02, Vol.67 (2), p.566-570
Hauptverfasser: Chen, Y. Q., Feng, J. T., Wang, J. L., Xu, X. B., He, Z. Y., Li, G. Y., Lei, D. Y., Chen, Y., Huang, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 570
container_issue 2
container_start_page 566
container_title IEEE transactions on electron devices
container_volume 67
creator Chen, Y. Q.
Feng, J. T.
Wang, J. L.
Xu, X. B.
He, Z. Y.
Li, G. Y.
Lei, D. Y.
Chen, Y.
Huang, Y.
description The degradation behavior and its mechanisms of E-mode GaN high electron mobility transistors (HEMTs) with p-GaN gate under electrostatic discharge (ESD) stress were investigated. Reverse short-pulse stress was generated by a transmission line pulse (TLP) tester in order to simulate the static electricity. The experiment results show that the reverse short-pulse stress leads to the characteristic degradation of the E-mode GaN HEMTs with p-GaN gate. The values of the threshold voltage and ON-resistance increase, and the gate capacitance curve shifts positively. The low-frequency noises (LFNs) were obtained for the E-mode GaN HEMTs with p-GaN gate before and after the reverse short-pulse stress. The concentration of traps was extracted, and it has doubled after 700 cycles. The degradation mechanism could be attributed to the generation of traps at p-GaN/AlGaN heterointerface, AlGaN barrier, and GaN/AlGaN interface. Such an investigation can be a significant reference in the design and application of E-mode GaN power devices.
doi_str_mv 10.1109/TED.2019.2959299
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8948361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8948361</ieee_id><sourcerecordid>2349118012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e224fd3dd04da4eb85478b1631f3f491a26633e65a4b4bc81c60ca55051984fd3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujiYjem3jTxOthv1baS4UJJqCJQrxsuu0MRmDDtpD47-0C8ao5zfs-5-RB6J6SAaVEPy2y8YARqgdMp5ppfYF6NE2HiZZCXqIeIVQlmit-jW6838RRCsF6KIxh5WxpQ902-AXW9li3DtumxHMo1rap_c7jtsJZMm9LwBP7jqfZfOHxdx3WeJ90HxMbAC-bEhz-hCM4DzjbQhFc60MEF3hc-8hyK8BfwYH3t-iqslsPd-e3j5av2WI0TWYfk7fR8ywpmKYhAcZEVfKyJKK0AnKViqHKqeS04pXQ1DIpOQeZWpGLvFC0kKSwaUpSqlXX7KPHE3fv2p8D-GA27cE1caVhPAKoIpTFFDmliniwd1CZvat31v0aSkzn1kS3pnNrzm5j5eFUqQHgP660UFxS_gdjmXP3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349118012</pqid></control><display><type>article</type><title>Degradation Behavior and Mechanisms of E-Mode GaN HEMTs With p-GaN Gate Under Reverse Electrostatic Discharge Stress</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Y. Q. ; Feng, J. T. ; Wang, J. L. ; Xu, X. B. ; He, Z. Y. ; Li, G. Y. ; Lei, D. Y. ; Chen, Y. ; Huang, Y.</creator><creatorcontrib>Chen, Y. Q. ; Feng, J. T. ; Wang, J. L. ; Xu, X. B. ; He, Z. Y. ; Li, G. Y. ; Lei, D. Y. ; Chen, Y. ; Huang, Y.</creatorcontrib><description>The degradation behavior and its mechanisms of E-mode GaN high electron mobility transistors (HEMTs) with p-GaN gate under electrostatic discharge (ESD) stress were investigated. Reverse short-pulse stress was generated by a transmission line pulse (TLP) tester in order to simulate the static electricity. The experiment results show that the reverse short-pulse stress leads to the characteristic degradation of the E-mode GaN HEMTs with p-GaN gate. The values of the threshold voltage and ON-resistance increase, and the gate capacitance curve shifts positively. The low-frequency noises (LFNs) were obtained for the E-mode GaN HEMTs with p-GaN gate before and after the reverse short-pulse stress. The concentration of traps was extracted, and it has doubled after 700 cycles. The degradation mechanism could be attributed to the generation of traps at p-GaN/AlGaN heterointerface, AlGaN barrier, and GaN/AlGaN interface. Such an investigation can be a significant reference in the design and application of E-mode GaN power devices.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2019.2959299</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum gallium nitride ; Aluminum gallium nitrides ; Degradation ; Electron mobility ; Electronic devices ; Electrostatic discharge (ESD) ; Electrostatic discharges ; Gallium nitride ; HEMTs ; high electron mobility transistor (HEMT) ; High electron mobility transistors ; Logic gates ; low-frequency noise (LFN) ; MODFETs ; p-GaN ; Semiconductor devices ; Static electricity ; Stress ; Stress concentration ; Threshold voltage ; Transmission lines ; trap</subject><ispartof>IEEE transactions on electron devices, 2020-02, Vol.67 (2), p.566-570</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e224fd3dd04da4eb85478b1631f3f491a26633e65a4b4bc81c60ca55051984fd3</citedby><cites>FETCH-LOGICAL-c291t-e224fd3dd04da4eb85478b1631f3f491a26633e65a4b4bc81c60ca55051984fd3</cites><orcidid>0000-0001-6901-3000 ; 0000-0002-9377-5264 ; 0000-0002-0064-3626 ; 0000-0001-8935-649X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8948361$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8948361$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Y. Q.</creatorcontrib><creatorcontrib>Feng, J. T.</creatorcontrib><creatorcontrib>Wang, J. L.</creatorcontrib><creatorcontrib>Xu, X. B.</creatorcontrib><creatorcontrib>He, Z. Y.</creatorcontrib><creatorcontrib>Li, G. Y.</creatorcontrib><creatorcontrib>Lei, D. Y.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Huang, Y.</creatorcontrib><title>Degradation Behavior and Mechanisms of E-Mode GaN HEMTs With p-GaN Gate Under Reverse Electrostatic Discharge Stress</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The degradation behavior and its mechanisms of E-mode GaN high electron mobility transistors (HEMTs) with p-GaN gate under electrostatic discharge (ESD) stress were investigated. Reverse short-pulse stress was generated by a transmission line pulse (TLP) tester in order to simulate the static electricity. The experiment results show that the reverse short-pulse stress leads to the characteristic degradation of the E-mode GaN HEMTs with p-GaN gate. The values of the threshold voltage and ON-resistance increase, and the gate capacitance curve shifts positively. The low-frequency noises (LFNs) were obtained for the E-mode GaN HEMTs with p-GaN gate before and after the reverse short-pulse stress. The concentration of traps was extracted, and it has doubled after 700 cycles. The degradation mechanism could be attributed to the generation of traps at p-GaN/AlGaN heterointerface, AlGaN barrier, and GaN/AlGaN interface. Such an investigation can be a significant reference in the design and application of E-mode GaN power devices.</description><subject>Aluminum gallium nitride</subject><subject>Aluminum gallium nitrides</subject><subject>Degradation</subject><subject>Electron mobility</subject><subject>Electronic devices</subject><subject>Electrostatic discharge (ESD)</subject><subject>Electrostatic discharges</subject><subject>Gallium nitride</subject><subject>HEMTs</subject><subject>high electron mobility transistor (HEMT)</subject><subject>High electron mobility transistors</subject><subject>Logic gates</subject><subject>low-frequency noise (LFN)</subject><subject>MODFETs</subject><subject>p-GaN</subject><subject>Semiconductor devices</subject><subject>Static electricity</subject><subject>Stress</subject><subject>Stress concentration</subject><subject>Threshold voltage</subject><subject>Transmission lines</subject><subject>trap</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1PwjAUhhujiYjem3jTxOthv1baS4UJJqCJQrxsuu0MRmDDtpD47-0C8ao5zfs-5-RB6J6SAaVEPy2y8YARqgdMp5ppfYF6NE2HiZZCXqIeIVQlmit-jW6838RRCsF6KIxh5WxpQ902-AXW9li3DtumxHMo1rap_c7jtsJZMm9LwBP7jqfZfOHxdx3WeJ90HxMbAC-bEhz-hCM4DzjbQhFc60MEF3hc-8hyK8BfwYH3t-iqslsPd-e3j5av2WI0TWYfk7fR8ywpmKYhAcZEVfKyJKK0AnKViqHKqeS04pXQ1DIpOQeZWpGLvFC0kKSwaUpSqlXX7KPHE3fv2p8D-GA27cE1caVhPAKoIpTFFDmliniwd1CZvat31v0aSkzn1kS3pnNrzm5j5eFUqQHgP660UFxS_gdjmXP3</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Chen, Y. Q.</creator><creator>Feng, J. T.</creator><creator>Wang, J. L.</creator><creator>Xu, X. B.</creator><creator>He, Z. Y.</creator><creator>Li, G. Y.</creator><creator>Lei, D. Y.</creator><creator>Chen, Y.</creator><creator>Huang, Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6901-3000</orcidid><orcidid>https://orcid.org/0000-0002-9377-5264</orcidid><orcidid>https://orcid.org/0000-0002-0064-3626</orcidid><orcidid>https://orcid.org/0000-0001-8935-649X</orcidid></search><sort><creationdate>20200201</creationdate><title>Degradation Behavior and Mechanisms of E-Mode GaN HEMTs With p-GaN Gate Under Reverse Electrostatic Discharge Stress</title><author>Chen, Y. Q. ; Feng, J. T. ; Wang, J. L. ; Xu, X. B. ; He, Z. Y. ; Li, G. Y. ; Lei, D. Y. ; Chen, Y. ; Huang, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e224fd3dd04da4eb85478b1631f3f491a26633e65a4b4bc81c60ca55051984fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum gallium nitride</topic><topic>Aluminum gallium nitrides</topic><topic>Degradation</topic><topic>Electron mobility</topic><topic>Electronic devices</topic><topic>Electrostatic discharge (ESD)</topic><topic>Electrostatic discharges</topic><topic>Gallium nitride</topic><topic>HEMTs</topic><topic>high electron mobility transistor (HEMT)</topic><topic>High electron mobility transistors</topic><topic>Logic gates</topic><topic>low-frequency noise (LFN)</topic><topic>MODFETs</topic><topic>p-GaN</topic><topic>Semiconductor devices</topic><topic>Static electricity</topic><topic>Stress</topic><topic>Stress concentration</topic><topic>Threshold voltage</topic><topic>Transmission lines</topic><topic>trap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Y. Q.</creatorcontrib><creatorcontrib>Feng, J. T.</creatorcontrib><creatorcontrib>Wang, J. L.</creatorcontrib><creatorcontrib>Xu, X. B.</creatorcontrib><creatorcontrib>He, Z. Y.</creatorcontrib><creatorcontrib>Li, G. Y.</creatorcontrib><creatorcontrib>Lei, D. Y.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Huang, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Y. Q.</au><au>Feng, J. T.</au><au>Wang, J. L.</au><au>Xu, X. B.</au><au>He, Z. Y.</au><au>Li, G. Y.</au><au>Lei, D. Y.</au><au>Chen, Y.</au><au>Huang, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degradation Behavior and Mechanisms of E-Mode GaN HEMTs With p-GaN Gate Under Reverse Electrostatic Discharge Stress</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>67</volume><issue>2</issue><spage>566</spage><epage>570</epage><pages>566-570</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The degradation behavior and its mechanisms of E-mode GaN high electron mobility transistors (HEMTs) with p-GaN gate under electrostatic discharge (ESD) stress were investigated. Reverse short-pulse stress was generated by a transmission line pulse (TLP) tester in order to simulate the static electricity. The experiment results show that the reverse short-pulse stress leads to the characteristic degradation of the E-mode GaN HEMTs with p-GaN gate. The values of the threshold voltage and ON-resistance increase, and the gate capacitance curve shifts positively. The low-frequency noises (LFNs) were obtained for the E-mode GaN HEMTs with p-GaN gate before and after the reverse short-pulse stress. The concentration of traps was extracted, and it has doubled after 700 cycles. The degradation mechanism could be attributed to the generation of traps at p-GaN/AlGaN heterointerface, AlGaN barrier, and GaN/AlGaN interface. Such an investigation can be a significant reference in the design and application of E-mode GaN power devices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2019.2959299</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6901-3000</orcidid><orcidid>https://orcid.org/0000-0002-9377-5264</orcidid><orcidid>https://orcid.org/0000-0002-0064-3626</orcidid><orcidid>https://orcid.org/0000-0001-8935-649X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2020-02, Vol.67 (2), p.566-570
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_8948361
source IEEE Electronic Library (IEL)
subjects Aluminum gallium nitride
Aluminum gallium nitrides
Degradation
Electron mobility
Electronic devices
Electrostatic discharge (ESD)
Electrostatic discharges
Gallium nitride
HEMTs
high electron mobility transistor (HEMT)
High electron mobility transistors
Logic gates
low-frequency noise (LFN)
MODFETs
p-GaN
Semiconductor devices
Static electricity
Stress
Stress concentration
Threshold voltage
Transmission lines
trap
title Degradation Behavior and Mechanisms of E-Mode GaN HEMTs With p-GaN Gate Under Reverse Electrostatic Discharge Stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degradation%20Behavior%20and%20Mechanisms%20of%20E-Mode%20GaN%20HEMTs%20With%20p-GaN%20Gate%20Under%20Reverse%20Electrostatic%20Discharge%20Stress&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Chen,%20Y.%20Q.&rft.date=2020-02-01&rft.volume=67&rft.issue=2&rft.spage=566&rft.epage=570&rft.pages=566-570&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2019.2959299&rft_dat=%3Cproquest_RIE%3E2349118012%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349118012&rft_id=info:pmid/&rft_ieee_id=8948361&rfr_iscdi=true