A self-organizing RBF neural network based on distance concentration immune algorithm
Radial basis function neural network ( RBFNN ) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm ( DCIA &#...
Gespeichert in:
Veröffentlicht in: | IEEE/CAA journal of automatica sinica 2020-01, Vol.7 (1), p.276-291 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 291 |
---|---|
container_issue | 1 |
container_start_page | 276 |
container_title | IEEE/CAA journal of automatica sinica |
container_volume | 7 |
creator | Qiao, Junfei Li, Fei Yang, Cuili Li, Wenjing Gu, Ke |
description | Radial basis function neural network ( RBFNN ) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm ( DCIA ) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly, the information processing strength ( IPS ) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm ( DCIA-SORBFNN ) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIA-SORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors. |
doi_str_mv | 10.1109/JAS.2019.1911852 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8945495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8945495</ieee_id><sourcerecordid>2333541047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-d09cdf0f1ab3b37e2de9ab6e98998287cfd3407a168fcf03ee0c8d3cfb5743c63</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxRdRsNTeBS8Bz1vztZvNsRbrBwVB7Tlks5Oauk1qsovoX--Wll7mDcN78-CXZdcETwnB8u5l9j6lmMgpkYRUBT3LRpRRmUsq-PlpL8vLbJLSBmNMaCFKyUfZaoYStDYPca29-3N-jd7uF8hDH3U7SPcT4heqdYIGBY8alzrtDSAThum7qDs3nN1223tAul2H6LrP7VV2YXWbYHLUcbZaPHzMn_Ll6-PzfLbMDROsyxssTWOxJbpmNRNAG5C6LkFWUla0EsY2jGOhSVlZYzEDwKZqmLF1ITgzJRtnt4e_uxi-e0id2oQ--qFSUcZYwQnmYnDhg8vEkFIEq3bRbXX8VQSrPT818FN7furIb4jcHCIOAE72SvKCy4L9A2eobIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333541047</pqid></control><display><type>article</type><title>A self-organizing RBF neural network based on distance concentration immune algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Qiao, Junfei ; Li, Fei ; Yang, Cuili ; Li, Wenjing ; Gu, Ke</creator><creatorcontrib>Qiao, Junfei ; Li, Fei ; Yang, Cuili ; Li, Wenjing ; Gu, Ke</creatorcontrib><description><![CDATA[Radial basis function neural network ( RBFNN ) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm ( DCIA ) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly, the information processing strength ( IPS ) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm ( DCIA-SORBFNN ) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIA-SORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.]]></description><identifier>ISSN: 2329-9266</identifier><identifier>EISSN: 2329-9274</identifier><identifier>DOI: 10.1109/JAS.2019.1911852</identifier><identifier>CODEN: IJASJC</identifier><language>eng</language><publisher>Piscataway: Chinese Association of Automation (CAA)</publisher><subject>Algorithms ; Antibodies ; Approximation algorithms ; Biological neural networks ; Convergence ; Data processing ; Immune system ; IP networks ; Neural networks ; Neurons ; Nonlinear systems ; Parameter identification ; Prediction algorithms ; Radial basis function ; System identification</subject><ispartof>IEEE/CAA journal of automatica sinica, 2020-01, Vol.7 (1), p.276-291</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-d09cdf0f1ab3b37e2de9ab6e98998287cfd3407a168fcf03ee0c8d3cfb5743c63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8945495$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8945495$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qiao, Junfei</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Yang, Cuili</creatorcontrib><creatorcontrib>Li, Wenjing</creatorcontrib><creatorcontrib>Gu, Ke</creatorcontrib><title>A self-organizing RBF neural network based on distance concentration immune algorithm</title><title>IEEE/CAA journal of automatica sinica</title><addtitle>JAS</addtitle><description><![CDATA[Radial basis function neural network ( RBFNN ) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm ( DCIA ) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly, the information processing strength ( IPS ) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm ( DCIA-SORBFNN ) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIA-SORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.]]></description><subject>Algorithms</subject><subject>Antibodies</subject><subject>Approximation algorithms</subject><subject>Biological neural networks</subject><subject>Convergence</subject><subject>Data processing</subject><subject>Immune system</subject><subject>IP networks</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Nonlinear systems</subject><subject>Parameter identification</subject><subject>Prediction algorithms</subject><subject>Radial basis function</subject><subject>System identification</subject><issn>2329-9266</issn><issn>2329-9274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxRdRsNTeBS8Bz1vztZvNsRbrBwVB7Tlks5Oauk1qsovoX--Wll7mDcN78-CXZdcETwnB8u5l9j6lmMgpkYRUBT3LRpRRmUsq-PlpL8vLbJLSBmNMaCFKyUfZaoYStDYPca29-3N-jd7uF8hDH3U7SPcT4heqdYIGBY8alzrtDSAThum7qDs3nN1223tAul2H6LrP7VV2YXWbYHLUcbZaPHzMn_Ll6-PzfLbMDROsyxssTWOxJbpmNRNAG5C6LkFWUla0EsY2jGOhSVlZYzEDwKZqmLF1ITgzJRtnt4e_uxi-e0id2oQ--qFSUcZYwQnmYnDhg8vEkFIEq3bRbXX8VQSrPT818FN7furIb4jcHCIOAE72SvKCy4L9A2eobIw</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Qiao, Junfei</creator><creator>Li, Fei</creator><creator>Yang, Cuili</creator><creator>Li, Wenjing</creator><creator>Gu, Ke</creator><general>Chinese Association of Automation (CAA)</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202001</creationdate><title>A self-organizing RBF neural network based on distance concentration immune algorithm</title><author>Qiao, Junfei ; Li, Fei ; Yang, Cuili ; Li, Wenjing ; Gu, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-d09cdf0f1ab3b37e2de9ab6e98998287cfd3407a168fcf03ee0c8d3cfb5743c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Antibodies</topic><topic>Approximation algorithms</topic><topic>Biological neural networks</topic><topic>Convergence</topic><topic>Data processing</topic><topic>Immune system</topic><topic>IP networks</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Nonlinear systems</topic><topic>Parameter identification</topic><topic>Prediction algorithms</topic><topic>Radial basis function</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Junfei</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Yang, Cuili</creatorcontrib><creatorcontrib>Li, Wenjing</creatorcontrib><creatorcontrib>Gu, Ke</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/CAA journal of automatica sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiao, Junfei</au><au>Li, Fei</au><au>Yang, Cuili</au><au>Li, Wenjing</au><au>Gu, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self-organizing RBF neural network based on distance concentration immune algorithm</atitle><jtitle>IEEE/CAA journal of automatica sinica</jtitle><stitle>JAS</stitle><date>2020-01</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>276</spage><epage>291</epage><pages>276-291</pages><issn>2329-9266</issn><eissn>2329-9274</eissn><coden>IJASJC</coden><abstract><![CDATA[Radial basis function neural network ( RBFNN ) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm ( DCIA ) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly, the information processing strength ( IPS ) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm ( DCIA-SORBFNN ) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIA-SORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.]]></abstract><cop>Piscataway</cop><pub>Chinese Association of Automation (CAA)</pub><doi>10.1109/JAS.2019.1911852</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2329-9266 |
ispartof | IEEE/CAA journal of automatica sinica, 2020-01, Vol.7 (1), p.276-291 |
issn | 2329-9266 2329-9274 |
language | eng |
recordid | cdi_ieee_primary_8945495 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Antibodies Approximation algorithms Biological neural networks Convergence Data processing Immune system IP networks Neural networks Neurons Nonlinear systems Parameter identification Prediction algorithms Radial basis function System identification |
title | A self-organizing RBF neural network based on distance concentration immune algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self-organizing%20RBF%20neural%20network%20based%20on%20distance%20concentration%20immune%20algorithm&rft.jtitle=IEEE/CAA%20journal%20of%20automatica%20sinica&rft.au=Qiao,%20Junfei&rft.date=2020-01&rft.volume=7&rft.issue=1&rft.spage=276&rft.epage=291&rft.pages=276-291&rft.issn=2329-9266&rft.eissn=2329-9274&rft.coden=IJASJC&rft_id=info:doi/10.1109/JAS.2019.1911852&rft_dat=%3Cproquest_RIE%3E2333541047%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333541047&rft_id=info:pmid/&rft_ieee_id=8945495&rfr_iscdi=true |