A self-organizing RBF neural network based on distance concentration immune algorithm

Radial basis function neural network &#x0028 RBFNN &#x0029 is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm &#x0028 DCIA &#...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica 2020-01, Vol.7 (1), p.276-291
Hauptverfasser: Qiao, Junfei, Li, Fei, Yang, Cuili, Li, Wenjing, Gu, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 1
container_start_page 276
container_title IEEE/CAA journal of automatica sinica
container_volume 7
creator Qiao, Junfei
Li, Fei
Yang, Cuili
Li, Wenjing
Gu, Ke
description Radial basis function neural network &#x0028 RBFNN &#x0029 is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm &#x0028 DCIA &#x0029 is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly, the information processing strength &#x0028 IPS &#x0029 algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm &#x0028 DCIA-SORBFNN &#x0029 is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIA-SORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.
doi_str_mv 10.1109/JAS.2019.1911852
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8945495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8945495</ieee_id><sourcerecordid>2333541047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-d09cdf0f1ab3b37e2de9ab6e98998287cfd3407a168fcf03ee0c8d3cfb5743c63</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxRdRsNTeBS8Bz1vztZvNsRbrBwVB7Tlks5Oauk1qsovoX--Wll7mDcN78-CXZdcETwnB8u5l9j6lmMgpkYRUBT3LRpRRmUsq-PlpL8vLbJLSBmNMaCFKyUfZaoYStDYPca29-3N-jd7uF8hDH3U7SPcT4heqdYIGBY8alzrtDSAThum7qDs3nN1223tAul2H6LrP7VV2YXWbYHLUcbZaPHzMn_Ll6-PzfLbMDROsyxssTWOxJbpmNRNAG5C6LkFWUla0EsY2jGOhSVlZYzEDwKZqmLF1ITgzJRtnt4e_uxi-e0id2oQ--qFSUcZYwQnmYnDhg8vEkFIEq3bRbXX8VQSrPT818FN7furIb4jcHCIOAE72SvKCy4L9A2eobIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333541047</pqid></control><display><type>article</type><title>A self-organizing RBF neural network based on distance concentration immune algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Qiao, Junfei ; Li, Fei ; Yang, Cuili ; Li, Wenjing ; Gu, Ke</creator><creatorcontrib>Qiao, Junfei ; Li, Fei ; Yang, Cuili ; Li, Wenjing ; Gu, Ke</creatorcontrib><description><![CDATA[Radial basis function neural network &#x0028 RBFNN &#x0029 is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm &#x0028 DCIA &#x0029 is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly, the information processing strength &#x0028 IPS &#x0029 algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm &#x0028 DCIA-SORBFNN &#x0029 is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIA-SORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.]]></description><identifier>ISSN: 2329-9266</identifier><identifier>EISSN: 2329-9274</identifier><identifier>DOI: 10.1109/JAS.2019.1911852</identifier><identifier>CODEN: IJASJC</identifier><language>eng</language><publisher>Piscataway: Chinese Association of Automation (CAA)</publisher><subject>Algorithms ; Antibodies ; Approximation algorithms ; Biological neural networks ; Convergence ; Data processing ; Immune system ; IP networks ; Neural networks ; Neurons ; Nonlinear systems ; Parameter identification ; Prediction algorithms ; Radial basis function ; System identification</subject><ispartof>IEEE/CAA journal of automatica sinica, 2020-01, Vol.7 (1), p.276-291</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-d09cdf0f1ab3b37e2de9ab6e98998287cfd3407a168fcf03ee0c8d3cfb5743c63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8945495$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8945495$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qiao, Junfei</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Yang, Cuili</creatorcontrib><creatorcontrib>Li, Wenjing</creatorcontrib><creatorcontrib>Gu, Ke</creatorcontrib><title>A self-organizing RBF neural network based on distance concentration immune algorithm</title><title>IEEE/CAA journal of automatica sinica</title><addtitle>JAS</addtitle><description><![CDATA[Radial basis function neural network &#x0028 RBFNN &#x0029 is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm &#x0028 DCIA &#x0029 is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly, the information processing strength &#x0028 IPS &#x0029 algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm &#x0028 DCIA-SORBFNN &#x0029 is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIA-SORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.]]></description><subject>Algorithms</subject><subject>Antibodies</subject><subject>Approximation algorithms</subject><subject>Biological neural networks</subject><subject>Convergence</subject><subject>Data processing</subject><subject>Immune system</subject><subject>IP networks</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Nonlinear systems</subject><subject>Parameter identification</subject><subject>Prediction algorithms</subject><subject>Radial basis function</subject><subject>System identification</subject><issn>2329-9266</issn><issn>2329-9274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxRdRsNTeBS8Bz1vztZvNsRbrBwVB7Tlks5Oauk1qsovoX--Wll7mDcN78-CXZdcETwnB8u5l9j6lmMgpkYRUBT3LRpRRmUsq-PlpL8vLbJLSBmNMaCFKyUfZaoYStDYPca29-3N-jd7uF8hDH3U7SPcT4heqdYIGBY8alzrtDSAThum7qDs3nN1223tAul2H6LrP7VV2YXWbYHLUcbZaPHzMn_Ll6-PzfLbMDROsyxssTWOxJbpmNRNAG5C6LkFWUla0EsY2jGOhSVlZYzEDwKZqmLF1ITgzJRtnt4e_uxi-e0id2oQ--qFSUcZYwQnmYnDhg8vEkFIEq3bRbXX8VQSrPT818FN7furIb4jcHCIOAE72SvKCy4L9A2eobIw</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Qiao, Junfei</creator><creator>Li, Fei</creator><creator>Yang, Cuili</creator><creator>Li, Wenjing</creator><creator>Gu, Ke</creator><general>Chinese Association of Automation (CAA)</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202001</creationdate><title>A self-organizing RBF neural network based on distance concentration immune algorithm</title><author>Qiao, Junfei ; Li, Fei ; Yang, Cuili ; Li, Wenjing ; Gu, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-d09cdf0f1ab3b37e2de9ab6e98998287cfd3407a168fcf03ee0c8d3cfb5743c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Antibodies</topic><topic>Approximation algorithms</topic><topic>Biological neural networks</topic><topic>Convergence</topic><topic>Data processing</topic><topic>Immune system</topic><topic>IP networks</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Nonlinear systems</topic><topic>Parameter identification</topic><topic>Prediction algorithms</topic><topic>Radial basis function</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Junfei</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Yang, Cuili</creatorcontrib><creatorcontrib>Li, Wenjing</creatorcontrib><creatorcontrib>Gu, Ke</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/CAA journal of automatica sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiao, Junfei</au><au>Li, Fei</au><au>Yang, Cuili</au><au>Li, Wenjing</au><au>Gu, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self-organizing RBF neural network based on distance concentration immune algorithm</atitle><jtitle>IEEE/CAA journal of automatica sinica</jtitle><stitle>JAS</stitle><date>2020-01</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>276</spage><epage>291</epage><pages>276-291</pages><issn>2329-9266</issn><eissn>2329-9274</eissn><coden>IJASJC</coden><abstract><![CDATA[Radial basis function neural network &#x0028 RBFNN &#x0029 is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm &#x0028 DCIA &#x0029 is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly, the information processing strength &#x0028 IPS &#x0029 algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm &#x0028 DCIA-SORBFNN &#x0029 is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIA-SORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.]]></abstract><cop>Piscataway</cop><pub>Chinese Association of Automation (CAA)</pub><doi>10.1109/JAS.2019.1911852</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-9266
ispartof IEEE/CAA journal of automatica sinica, 2020-01, Vol.7 (1), p.276-291
issn 2329-9266
2329-9274
language eng
recordid cdi_ieee_primary_8945495
source IEEE Electronic Library (IEL)
subjects Algorithms
Antibodies
Approximation algorithms
Biological neural networks
Convergence
Data processing
Immune system
IP networks
Neural networks
Neurons
Nonlinear systems
Parameter identification
Prediction algorithms
Radial basis function
System identification
title A self-organizing RBF neural network based on distance concentration immune algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self-organizing%20RBF%20neural%20network%20based%20on%20distance%20concentration%20immune%20algorithm&rft.jtitle=IEEE/CAA%20journal%20of%20automatica%20sinica&rft.au=Qiao,%20Junfei&rft.date=2020-01&rft.volume=7&rft.issue=1&rft.spage=276&rft.epage=291&rft.pages=276-291&rft.issn=2329-9266&rft.eissn=2329-9274&rft.coden=IJASJC&rft_id=info:doi/10.1109/JAS.2019.1911852&rft_dat=%3Cproquest_RIE%3E2333541047%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333541047&rft_id=info:pmid/&rft_ieee_id=8945495&rfr_iscdi=true