Magnetic Field Tunable Ferromagnetic Shape Memory Alloy-Based Piezo-Resonator

In this letter, we have performed a comprehensive analysis of the influence of the magnetic field on BAW resonator consisting of a highly magnetostrictive layer and AlN thin film. The fundamental resonant frequency of the fabricated BAW resonator is about ~4.22 GHz. In the presence of a magnetic fie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2020-02, Vol.41 (2), p.280-283
Hauptverfasser: Pawar, Shuvam, Singh, Jitendra, Kaur, Davinder
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 283
container_issue 2
container_start_page 280
container_title IEEE electron device letters
container_volume 41
creator Pawar, Shuvam
Singh, Jitendra
Kaur, Davinder
description In this letter, we have performed a comprehensive analysis of the influence of the magnetic field on BAW resonator consisting of a highly magnetostrictive layer and AlN thin film. The fundamental resonant frequency of the fabricated BAW resonator is about ~4.22 GHz. In the presence of a magnetic field, we studied the effect on the resonator parameters such as resonant frequency, acoustic velocity, and coupling coefficient. For the magnetic field of strength 1200 Oe, the resonant frequency significantly shifts by ~360 MHz. Resonant frequency increases and electromechanical coupling coefficient (kt) decreases with the increase in the DC magnetic field. The maximum acoustic velocity of ~7350 m/sec was observed at the magnetic field of 1500 Oe when applied parallel to the surface. Agilent Advanced Design Software (ADS) was used to extract the equivalent Modified Butterworth-Van Dyke circuit parameters (R m , C m , and L m ) of the resonator. Further, in the presence of the magnetic field, we obtained the variation in values of R m , C m , and L m of the resonator structure. Such tunable resonators can be useful and vital in dealing with varying frequency bands for sustainable growth in wireless communication and magnetic field sensor applications.
doi_str_mv 10.1109/LED.2019.2962876
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8945198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8945198</ieee_id><sourcerecordid>2349128878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e99173fa3c6d68cf0edff30b110e22f270bca08e16efad99ecdbfda7f263ac4a3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqWwI7FEYk7xVxx7LKUFpFYgKLPl2GdIlcbFTofy60nVwnTDPe97ugeha4JHhGB1N58-jCgmakSVoLIUJ2hAikLmuBDsFA1wyUnOCBbn6CKlFcaE85IP0GJhPlvoapvNamhctty2pmogm0GMYf23e_8yG8gWsA5xl42bJuzye5PAZa81_IT8DVJoTRfiJTrzpklwdZxD9DGbLidP-fzl8XkynueWKtLloBQpmTfMCiek9Ric9wxX_SNAqaclrqzBEogAb5xSYF3lnSk9FcxYbtgQ3R56NzF8byF1ehW2se1Pasq4IlTKUvYUPlA2hpQieL2J9drEnSZY76XpXpreS9NHaX3k5hCpAeAfl4oXREn2C00YaQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349128878</pqid></control><display><type>article</type><title>Magnetic Field Tunable Ferromagnetic Shape Memory Alloy-Based Piezo-Resonator</title><source>IEEE Electronic Library Online</source><creator>Pawar, Shuvam ; Singh, Jitendra ; Kaur, Davinder</creator><creatorcontrib>Pawar, Shuvam ; Singh, Jitendra ; Kaur, Davinder</creatorcontrib><description>In this letter, we have performed a comprehensive analysis of the influence of the magnetic field on BAW resonator consisting of a highly magnetostrictive layer and AlN thin film. The fundamental resonant frequency of the fabricated BAW resonator is about ~4.22 GHz. In the presence of a magnetic field, we studied the effect on the resonator parameters such as resonant frequency, acoustic velocity, and coupling coefficient. For the magnetic field of strength 1200 Oe, the resonant frequency significantly shifts by ~360 MHz. Resonant frequency increases and electromechanical coupling coefficient (kt) decreases with the increase in the DC magnetic field. The maximum acoustic velocity of ~7350 m/sec was observed at the magnetic field of 1500 Oe when applied parallel to the surface. Agilent Advanced Design Software (ADS) was used to extract the equivalent Modified Butterworth-Van Dyke circuit parameters (R m , C m , and L m ) of the resonator. Further, in the presence of the magnetic field, we obtained the variation in values of R m , C m , and L m of the resonator structure. Such tunable resonators can be useful and vital in dealing with varying frequency bands for sustainable growth in wireless communication and magnetic field sensor applications.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2019.2962876</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic coupling ; Acoustic velocity ; Circuits ; Coupling coefficients ; Design modifications ; Ferromagnetism ; Frequencies ; Magnetic domains ; Magnetic fields ; Magnetic resonance ; Magnetism ; Magnetoacoustic effects ; Magnetoelectric effects ; Magnetostriction ; Parameter modification ; piezoelectric ; Resonant frequencies ; Resonators ; sensors ; Shape memory alloys ; Thin films ; Wireless communications</subject><ispartof>IEEE electron device letters, 2020-02, Vol.41 (2), p.280-283</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e99173fa3c6d68cf0edff30b110e22f270bca08e16efad99ecdbfda7f263ac4a3</citedby><cites>FETCH-LOGICAL-c291t-e99173fa3c6d68cf0edff30b110e22f270bca08e16efad99ecdbfda7f263ac4a3</cites><orcidid>0000-0003-3752-4687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8945198$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8945198$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pawar, Shuvam</creatorcontrib><creatorcontrib>Singh, Jitendra</creatorcontrib><creatorcontrib>Kaur, Davinder</creatorcontrib><title>Magnetic Field Tunable Ferromagnetic Shape Memory Alloy-Based Piezo-Resonator</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>In this letter, we have performed a comprehensive analysis of the influence of the magnetic field on BAW resonator consisting of a highly magnetostrictive layer and AlN thin film. The fundamental resonant frequency of the fabricated BAW resonator is about ~4.22 GHz. In the presence of a magnetic field, we studied the effect on the resonator parameters such as resonant frequency, acoustic velocity, and coupling coefficient. For the magnetic field of strength 1200 Oe, the resonant frequency significantly shifts by ~360 MHz. Resonant frequency increases and electromechanical coupling coefficient (kt) decreases with the increase in the DC magnetic field. The maximum acoustic velocity of ~7350 m/sec was observed at the magnetic field of 1500 Oe when applied parallel to the surface. Agilent Advanced Design Software (ADS) was used to extract the equivalent Modified Butterworth-Van Dyke circuit parameters (R m , C m , and L m ) of the resonator. Further, in the presence of the magnetic field, we obtained the variation in values of R m , C m , and L m of the resonator structure. Such tunable resonators can be useful and vital in dealing with varying frequency bands for sustainable growth in wireless communication and magnetic field sensor applications.</description><subject>Acoustic coupling</subject><subject>Acoustic velocity</subject><subject>Circuits</subject><subject>Coupling coefficients</subject><subject>Design modifications</subject><subject>Ferromagnetism</subject><subject>Frequencies</subject><subject>Magnetic domains</subject><subject>Magnetic fields</subject><subject>Magnetic resonance</subject><subject>Magnetism</subject><subject>Magnetoacoustic effects</subject><subject>Magnetoelectric effects</subject><subject>Magnetostriction</subject><subject>Parameter modification</subject><subject>piezoelectric</subject><subject>Resonant frequencies</subject><subject>Resonators</subject><subject>sensors</subject><subject>Shape memory alloys</subject><subject>Thin films</subject><subject>Wireless communications</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EEqWwI7FEYk7xVxx7LKUFpFYgKLPl2GdIlcbFTofy60nVwnTDPe97ugeha4JHhGB1N58-jCgmakSVoLIUJ2hAikLmuBDsFA1wyUnOCBbn6CKlFcaE85IP0GJhPlvoapvNamhctty2pmogm0GMYf23e_8yG8gWsA5xl42bJuzye5PAZa81_IT8DVJoTRfiJTrzpklwdZxD9DGbLidP-fzl8XkynueWKtLloBQpmTfMCiek9Ric9wxX_SNAqaclrqzBEogAb5xSYF3lnSk9FcxYbtgQ3R56NzF8byF1ehW2se1Pasq4IlTKUvYUPlA2hpQieL2J9drEnSZY76XpXpreS9NHaX3k5hCpAeAfl4oXREn2C00YaQY</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Pawar, Shuvam</creator><creator>Singh, Jitendra</creator><creator>Kaur, Davinder</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3752-4687</orcidid></search><sort><creationdate>20200201</creationdate><title>Magnetic Field Tunable Ferromagnetic Shape Memory Alloy-Based Piezo-Resonator</title><author>Pawar, Shuvam ; Singh, Jitendra ; Kaur, Davinder</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e99173fa3c6d68cf0edff30b110e22f270bca08e16efad99ecdbfda7f263ac4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic coupling</topic><topic>Acoustic velocity</topic><topic>Circuits</topic><topic>Coupling coefficients</topic><topic>Design modifications</topic><topic>Ferromagnetism</topic><topic>Frequencies</topic><topic>Magnetic domains</topic><topic>Magnetic fields</topic><topic>Magnetic resonance</topic><topic>Magnetism</topic><topic>Magnetoacoustic effects</topic><topic>Magnetoelectric effects</topic><topic>Magnetostriction</topic><topic>Parameter modification</topic><topic>piezoelectric</topic><topic>Resonant frequencies</topic><topic>Resonators</topic><topic>sensors</topic><topic>Shape memory alloys</topic><topic>Thin films</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pawar, Shuvam</creatorcontrib><creatorcontrib>Singh, Jitendra</creatorcontrib><creatorcontrib>Kaur, Davinder</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pawar, Shuvam</au><au>Singh, Jitendra</au><au>Kaur, Davinder</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Field Tunable Ferromagnetic Shape Memory Alloy-Based Piezo-Resonator</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>41</volume><issue>2</issue><spage>280</spage><epage>283</epage><pages>280-283</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>In this letter, we have performed a comprehensive analysis of the influence of the magnetic field on BAW resonator consisting of a highly magnetostrictive layer and AlN thin film. The fundamental resonant frequency of the fabricated BAW resonator is about ~4.22 GHz. In the presence of a magnetic field, we studied the effect on the resonator parameters such as resonant frequency, acoustic velocity, and coupling coefficient. For the magnetic field of strength 1200 Oe, the resonant frequency significantly shifts by ~360 MHz. Resonant frequency increases and electromechanical coupling coefficient (kt) decreases with the increase in the DC magnetic field. The maximum acoustic velocity of ~7350 m/sec was observed at the magnetic field of 1500 Oe when applied parallel to the surface. Agilent Advanced Design Software (ADS) was used to extract the equivalent Modified Butterworth-Van Dyke circuit parameters (R m , C m , and L m ) of the resonator. Further, in the presence of the magnetic field, we obtained the variation in values of R m , C m , and L m of the resonator structure. Such tunable resonators can be useful and vital in dealing with varying frequency bands for sustainable growth in wireless communication and magnetic field sensor applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2019.2962876</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-3752-4687</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2020-02, Vol.41 (2), p.280-283
issn 0741-3106
1558-0563
language eng
recordid cdi_ieee_primary_8945198
source IEEE Electronic Library Online
subjects Acoustic coupling
Acoustic velocity
Circuits
Coupling coefficients
Design modifications
Ferromagnetism
Frequencies
Magnetic domains
Magnetic fields
Magnetic resonance
Magnetism
Magnetoacoustic effects
Magnetoelectric effects
Magnetostriction
Parameter modification
piezoelectric
Resonant frequencies
Resonators
sensors
Shape memory alloys
Thin films
Wireless communications
title Magnetic Field Tunable Ferromagnetic Shape Memory Alloy-Based Piezo-Resonator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Field%20Tunable%20Ferromagnetic%20Shape%20Memory%20Alloy-Based%20Piezo-Resonator&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Pawar,%20Shuvam&rft.date=2020-02-01&rft.volume=41&rft.issue=2&rft.spage=280&rft.epage=283&rft.pages=280-283&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2019.2962876&rft_dat=%3Cproquest_RIE%3E2349128878%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349128878&rft_id=info:pmid/&rft_ieee_id=8945198&rfr_iscdi=true