Magnetic Field Tunable Ferromagnetic Shape Memory Alloy-Based Piezo-Resonator
In this letter, we have performed a comprehensive analysis of the influence of the magnetic field on BAW resonator consisting of a highly magnetostrictive layer and AlN thin film. The fundamental resonant frequency of the fabricated BAW resonator is about ~4.22 GHz. In the presence of a magnetic fie...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2020-02, Vol.41 (2), p.280-283 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 283 |
---|---|
container_issue | 2 |
container_start_page | 280 |
container_title | IEEE electron device letters |
container_volume | 41 |
creator | Pawar, Shuvam Singh, Jitendra Kaur, Davinder |
description | In this letter, we have performed a comprehensive analysis of the influence of the magnetic field on BAW resonator consisting of a highly magnetostrictive layer and AlN thin film. The fundamental resonant frequency of the fabricated BAW resonator is about ~4.22 GHz. In the presence of a magnetic field, we studied the effect on the resonator parameters such as resonant frequency, acoustic velocity, and coupling coefficient. For the magnetic field of strength 1200 Oe, the resonant frequency significantly shifts by ~360 MHz. Resonant frequency increases and electromechanical coupling coefficient (kt) decreases with the increase in the DC magnetic field. The maximum acoustic velocity of ~7350 m/sec was observed at the magnetic field of 1500 Oe when applied parallel to the surface. Agilent Advanced Design Software (ADS) was used to extract the equivalent Modified Butterworth-Van Dyke circuit parameters (R m , C m , and L m ) of the resonator. Further, in the presence of the magnetic field, we obtained the variation in values of R m , C m , and L m of the resonator structure. Such tunable resonators can be useful and vital in dealing with varying frequency bands for sustainable growth in wireless communication and magnetic field sensor applications. |
doi_str_mv | 10.1109/LED.2019.2962876 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8945198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8945198</ieee_id><sourcerecordid>2349128878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e99173fa3c6d68cf0edff30b110e22f270bca08e16efad99ecdbfda7f263ac4a3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqWwI7FEYk7xVxx7LKUFpFYgKLPl2GdIlcbFTofy60nVwnTDPe97ugeha4JHhGB1N58-jCgmakSVoLIUJ2hAikLmuBDsFA1wyUnOCBbn6CKlFcaE85IP0GJhPlvoapvNamhctty2pmogm0GMYf23e_8yG8gWsA5xl42bJuzye5PAZa81_IT8DVJoTRfiJTrzpklwdZxD9DGbLidP-fzl8XkynueWKtLloBQpmTfMCiek9Ric9wxX_SNAqaclrqzBEogAb5xSYF3lnSk9FcxYbtgQ3R56NzF8byF1ehW2se1Pasq4IlTKUvYUPlA2hpQieL2J9drEnSZY76XpXpreS9NHaX3k5hCpAeAfl4oXREn2C00YaQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349128878</pqid></control><display><type>article</type><title>Magnetic Field Tunable Ferromagnetic Shape Memory Alloy-Based Piezo-Resonator</title><source>IEEE Electronic Library Online</source><creator>Pawar, Shuvam ; Singh, Jitendra ; Kaur, Davinder</creator><creatorcontrib>Pawar, Shuvam ; Singh, Jitendra ; Kaur, Davinder</creatorcontrib><description>In this letter, we have performed a comprehensive analysis of the influence of the magnetic field on BAW resonator consisting of a highly magnetostrictive layer and AlN thin film. The fundamental resonant frequency of the fabricated BAW resonator is about ~4.22 GHz. In the presence of a magnetic field, we studied the effect on the resonator parameters such as resonant frequency, acoustic velocity, and coupling coefficient. For the magnetic field of strength 1200 Oe, the resonant frequency significantly shifts by ~360 MHz. Resonant frequency increases and electromechanical coupling coefficient (kt) decreases with the increase in the DC magnetic field. The maximum acoustic velocity of ~7350 m/sec was observed at the magnetic field of 1500 Oe when applied parallel to the surface. Agilent Advanced Design Software (ADS) was used to extract the equivalent Modified Butterworth-Van Dyke circuit parameters (R m , C m , and L m ) of the resonator. Further, in the presence of the magnetic field, we obtained the variation in values of R m , C m , and L m of the resonator structure. Such tunable resonators can be useful and vital in dealing with varying frequency bands for sustainable growth in wireless communication and magnetic field sensor applications.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2019.2962876</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic coupling ; Acoustic velocity ; Circuits ; Coupling coefficients ; Design modifications ; Ferromagnetism ; Frequencies ; Magnetic domains ; Magnetic fields ; Magnetic resonance ; Magnetism ; Magnetoacoustic effects ; Magnetoelectric effects ; Magnetostriction ; Parameter modification ; piezoelectric ; Resonant frequencies ; Resonators ; sensors ; Shape memory alloys ; Thin films ; Wireless communications</subject><ispartof>IEEE electron device letters, 2020-02, Vol.41 (2), p.280-283</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e99173fa3c6d68cf0edff30b110e22f270bca08e16efad99ecdbfda7f263ac4a3</citedby><cites>FETCH-LOGICAL-c291t-e99173fa3c6d68cf0edff30b110e22f270bca08e16efad99ecdbfda7f263ac4a3</cites><orcidid>0000-0003-3752-4687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8945198$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8945198$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pawar, Shuvam</creatorcontrib><creatorcontrib>Singh, Jitendra</creatorcontrib><creatorcontrib>Kaur, Davinder</creatorcontrib><title>Magnetic Field Tunable Ferromagnetic Shape Memory Alloy-Based Piezo-Resonator</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>In this letter, we have performed a comprehensive analysis of the influence of the magnetic field on BAW resonator consisting of a highly magnetostrictive layer and AlN thin film. The fundamental resonant frequency of the fabricated BAW resonator is about ~4.22 GHz. In the presence of a magnetic field, we studied the effect on the resonator parameters such as resonant frequency, acoustic velocity, and coupling coefficient. For the magnetic field of strength 1200 Oe, the resonant frequency significantly shifts by ~360 MHz. Resonant frequency increases and electromechanical coupling coefficient (kt) decreases with the increase in the DC magnetic field. The maximum acoustic velocity of ~7350 m/sec was observed at the magnetic field of 1500 Oe when applied parallel to the surface. Agilent Advanced Design Software (ADS) was used to extract the equivalent Modified Butterworth-Van Dyke circuit parameters (R m , C m , and L m ) of the resonator. Further, in the presence of the magnetic field, we obtained the variation in values of R m , C m , and L m of the resonator structure. Such tunable resonators can be useful and vital in dealing with varying frequency bands for sustainable growth in wireless communication and magnetic field sensor applications.</description><subject>Acoustic coupling</subject><subject>Acoustic velocity</subject><subject>Circuits</subject><subject>Coupling coefficients</subject><subject>Design modifications</subject><subject>Ferromagnetism</subject><subject>Frequencies</subject><subject>Magnetic domains</subject><subject>Magnetic fields</subject><subject>Magnetic resonance</subject><subject>Magnetism</subject><subject>Magnetoacoustic effects</subject><subject>Magnetoelectric effects</subject><subject>Magnetostriction</subject><subject>Parameter modification</subject><subject>piezoelectric</subject><subject>Resonant frequencies</subject><subject>Resonators</subject><subject>sensors</subject><subject>Shape memory alloys</subject><subject>Thin films</subject><subject>Wireless communications</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EEqWwI7FEYk7xVxx7LKUFpFYgKLPl2GdIlcbFTofy60nVwnTDPe97ugeha4JHhGB1N58-jCgmakSVoLIUJ2hAikLmuBDsFA1wyUnOCBbn6CKlFcaE85IP0GJhPlvoapvNamhctty2pmogm0GMYf23e_8yG8gWsA5xl42bJuzye5PAZa81_IT8DVJoTRfiJTrzpklwdZxD9DGbLidP-fzl8XkynueWKtLloBQpmTfMCiek9Ric9wxX_SNAqaclrqzBEogAb5xSYF3lnSk9FcxYbtgQ3R56NzF8byF1ehW2se1Pasq4IlTKUvYUPlA2hpQieL2J9drEnSZY76XpXpreS9NHaX3k5hCpAeAfl4oXREn2C00YaQY</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Pawar, Shuvam</creator><creator>Singh, Jitendra</creator><creator>Kaur, Davinder</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3752-4687</orcidid></search><sort><creationdate>20200201</creationdate><title>Magnetic Field Tunable Ferromagnetic Shape Memory Alloy-Based Piezo-Resonator</title><author>Pawar, Shuvam ; Singh, Jitendra ; Kaur, Davinder</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e99173fa3c6d68cf0edff30b110e22f270bca08e16efad99ecdbfda7f263ac4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic coupling</topic><topic>Acoustic velocity</topic><topic>Circuits</topic><topic>Coupling coefficients</topic><topic>Design modifications</topic><topic>Ferromagnetism</topic><topic>Frequencies</topic><topic>Magnetic domains</topic><topic>Magnetic fields</topic><topic>Magnetic resonance</topic><topic>Magnetism</topic><topic>Magnetoacoustic effects</topic><topic>Magnetoelectric effects</topic><topic>Magnetostriction</topic><topic>Parameter modification</topic><topic>piezoelectric</topic><topic>Resonant frequencies</topic><topic>Resonators</topic><topic>sensors</topic><topic>Shape memory alloys</topic><topic>Thin films</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pawar, Shuvam</creatorcontrib><creatorcontrib>Singh, Jitendra</creatorcontrib><creatorcontrib>Kaur, Davinder</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pawar, Shuvam</au><au>Singh, Jitendra</au><au>Kaur, Davinder</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Field Tunable Ferromagnetic Shape Memory Alloy-Based Piezo-Resonator</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>41</volume><issue>2</issue><spage>280</spage><epage>283</epage><pages>280-283</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>In this letter, we have performed a comprehensive analysis of the influence of the magnetic field on BAW resonator consisting of a highly magnetostrictive layer and AlN thin film. The fundamental resonant frequency of the fabricated BAW resonator is about ~4.22 GHz. In the presence of a magnetic field, we studied the effect on the resonator parameters such as resonant frequency, acoustic velocity, and coupling coefficient. For the magnetic field of strength 1200 Oe, the resonant frequency significantly shifts by ~360 MHz. Resonant frequency increases and electromechanical coupling coefficient (kt) decreases with the increase in the DC magnetic field. The maximum acoustic velocity of ~7350 m/sec was observed at the magnetic field of 1500 Oe when applied parallel to the surface. Agilent Advanced Design Software (ADS) was used to extract the equivalent Modified Butterworth-Van Dyke circuit parameters (R m , C m , and L m ) of the resonator. Further, in the presence of the magnetic field, we obtained the variation in values of R m , C m , and L m of the resonator structure. Such tunable resonators can be useful and vital in dealing with varying frequency bands for sustainable growth in wireless communication and magnetic field sensor applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2019.2962876</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-3752-4687</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2020-02, Vol.41 (2), p.280-283 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_ieee_primary_8945198 |
source | IEEE Electronic Library Online |
subjects | Acoustic coupling Acoustic velocity Circuits Coupling coefficients Design modifications Ferromagnetism Frequencies Magnetic domains Magnetic fields Magnetic resonance Magnetism Magnetoacoustic effects Magnetoelectric effects Magnetostriction Parameter modification piezoelectric Resonant frequencies Resonators sensors Shape memory alloys Thin films Wireless communications |
title | Magnetic Field Tunable Ferromagnetic Shape Memory Alloy-Based Piezo-Resonator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Field%20Tunable%20Ferromagnetic%20Shape%20Memory%20Alloy-Based%20Piezo-Resonator&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Pawar,%20Shuvam&rft.date=2020-02-01&rft.volume=41&rft.issue=2&rft.spage=280&rft.epage=283&rft.pages=280-283&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2019.2962876&rft_dat=%3Cproquest_RIE%3E2349128878%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349128878&rft_id=info:pmid/&rft_ieee_id=8945198&rfr_iscdi=true |