Electromagnetic Design and Fabrication of LPF2: A 12-T Hybrid Common-Coil Dipole Magnet With Inserted IBS Coil

High field dipole magnets with common-coil configuration are under development at IHEP (the Institute of High Energy Physics, Chinese Academy of Sciences) for key technology pre-study of high energy colliders. A model magnet named LPF1 has been fabricated and tested in 2018, which was made up of fou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2020-06, Vol.30 (4), p.1-5
Hauptverfasser: Wang, Chengtao, Yang, Xiangchen, Zhang, Zhan, Wang, Yingzhe, Kong, Ershuai, Zhang, Zhen, Shi, Jinrui, Wei, Shaoqing, Yao, Huanli, Wang, Juan, Gong, Lingling, Zhou, Jianxin, Peng, Quanling, Bian, Xiaojuan, Chen, Fusan, Xu, Qingjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 4
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 30
creator Wang, Chengtao
Yang, Xiangchen
Zhang, Zhan
Wang, Yingzhe
Kong, Ershuai
Zhang, Zhen
Shi, Jinrui
Wei, Shaoqing
Yao, Huanli
Wang, Juan
Gong, Lingling
Zhou, Jianxin
Peng, Quanling
Bian, Xiaojuan
Chen, Fusan
Xu, Qingjin
description High field dipole magnets with common-coil configuration are under development at IHEP (the Institute of High Energy Physics, Chinese Academy of Sciences) for key technology pre-study of high energy colliders. A model magnet named LPF1 has been fabricated and tested in 2018, which was made up of four flat racetrack NbTi coils and two flat racetrack Nb3Sn coils, and a main dipole field of 10.2 T has been reached in the two apertures at 4.2 K. A new model magnet LPF2 is being designed and fabricated in 2019, with four new Nb 3 Sn coils included comparing with LPF1, and the magnet is expected to reach a much higher field. To reduce the field enhancement at the coil ends, the newly fabricated Nb 3 Sn coils are designed with different straight lengths and bending radii. This hybrid dipole magnet is designed to provide a 12-T main field in the two apertures with an operating current of 5300 A, corresponding to a load line ratio of 78% at 4.2 K. A single-pancake racetrack IBS (Iron-based superconducting) coil wound with a 100-m IBS tape would be inserted into the middle of the magnet (between the inner-most two Nb 3 Sn coils). This magnet is also used to test the IBS coil performance under high field and high stress. The main design parameters, fabrication process of the magnet will be presented.
doi_str_mv 10.1109/TASC.2019.2962121
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8941303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8941303</ieee_id><sourcerecordid>2348109429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c6d1061381c3c85964c6391a274111f226c64a0091754ee04dc0aaec258aeca03</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zk48u9W52mxtMFDbxssQ0nRltMpPuYv_e1ok35xw47wc8CN0CGQGQ7GEzWecjSiAb0SylQOEMDUAImVAB4ry7iYBEUsou0VWMO0KASy4GyM1qo9vgG7V1prUaT020W4eVK_FcfQarVWu9w77Cq7c5fcQTDDTZ4MWx-5U4903jXZJ7W-Op3fva4JffJPxh2y-8dNGE1pR4-bTGvegaXVSqjubmbw_R-3y2yRfJ6vV5mU9WiaYZaxOdlkBSYBI001JkKdcpy0DRMQeAitJUp1wRksFYcGMILzVRymgqZDcVYUN0f8rdB_99MLEtdv4QXFdZUMZlR4x3RUMEJ5UOPsZgqmIfbKPCsQBS9FiLHmvRYy3-sHaeu5PHGmP-9TLjwAhjP3rLcII</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348109429</pqid></control><display><type>article</type><title>Electromagnetic Design and Fabrication of LPF2: A 12-T Hybrid Common-Coil Dipole Magnet With Inserted IBS Coil</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Chengtao ; Yang, Xiangchen ; Zhang, Zhan ; Wang, Yingzhe ; Kong, Ershuai ; Zhang, Zhen ; Shi, Jinrui ; Wei, Shaoqing ; Yao, Huanli ; Wang, Juan ; Gong, Lingling ; Zhou, Jianxin ; Peng, Quanling ; Bian, Xiaojuan ; Chen, Fusan ; Xu, Qingjin</creator><creatorcontrib>Wang, Chengtao ; Yang, Xiangchen ; Zhang, Zhan ; Wang, Yingzhe ; Kong, Ershuai ; Zhang, Zhen ; Shi, Jinrui ; Wei, Shaoqing ; Yao, Huanli ; Wang, Juan ; Gong, Lingling ; Zhou, Jianxin ; Peng, Quanling ; Bian, Xiaojuan ; Chen, Fusan ; Xu, Qingjin</creatorcontrib><description>High field dipole magnets with common-coil configuration are under development at IHEP (the Institute of High Energy Physics, Chinese Academy of Sciences) for key technology pre-study of high energy colliders. A model magnet named LPF1 has been fabricated and tested in 2018, which was made up of four flat racetrack NbTi coils and two flat racetrack Nb3Sn coils, and a main dipole field of 10.2 T has been reached in the two apertures at 4.2 K. A new model magnet LPF2 is being designed and fabricated in 2019, with four new Nb 3 Sn coils included comparing with LPF1, and the magnet is expected to reach a much higher field. To reduce the field enhancement at the coil ends, the newly fabricated Nb 3 Sn coils are designed with different straight lengths and bending radii. This hybrid dipole magnet is designed to provide a 12-T main field in the two apertures with an operating current of 5300 A, corresponding to a load line ratio of 78% at 4.2 K. A single-pancake racetrack IBS (Iron-based superconducting) coil wound with a 100-m IBS tape would be inserted into the middle of the magnet (between the inner-most two Nb 3 Sn coils). This magnet is also used to test the IBS coil performance under high field and high stress. The main design parameters, fabrication process of the magnet will be presented.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2019.2962121</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>accelerator magnet ; Apertures ; Bend radius ; Coils ; Design ; Design parameters ; Dipoles ; Glass ; Heat treatment ; High field ; hybrid dipole ; iron-based superconductor ; Magnetomechanical effects ; Magnets ; Niobium-tin ; Power cables ; Process parameters ; Racetracks ; Stress ; Superconducting magnets</subject><ispartof>IEEE transactions on applied superconductivity, 2020-06, Vol.30 (4), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c6d1061381c3c85964c6391a274111f226c64a0091754ee04dc0aaec258aeca03</citedby><cites>FETCH-LOGICAL-c293t-c6d1061381c3c85964c6391a274111f226c64a0091754ee04dc0aaec258aeca03</cites><orcidid>0000-0002-8113-6852 ; 0000-0002-2812-2697 ; 0000-0001-8760-2562 ; 0000-0002-1754-8668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8941303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8941303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Chengtao</creatorcontrib><creatorcontrib>Yang, Xiangchen</creatorcontrib><creatorcontrib>Zhang, Zhan</creatorcontrib><creatorcontrib>Wang, Yingzhe</creatorcontrib><creatorcontrib>Kong, Ershuai</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Shi, Jinrui</creatorcontrib><creatorcontrib>Wei, Shaoqing</creatorcontrib><creatorcontrib>Yao, Huanli</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Gong, Lingling</creatorcontrib><creatorcontrib>Zhou, Jianxin</creatorcontrib><creatorcontrib>Peng, Quanling</creatorcontrib><creatorcontrib>Bian, Xiaojuan</creatorcontrib><creatorcontrib>Chen, Fusan</creatorcontrib><creatorcontrib>Xu, Qingjin</creatorcontrib><title>Electromagnetic Design and Fabrication of LPF2: A 12-T Hybrid Common-Coil Dipole Magnet With Inserted IBS Coil</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>High field dipole magnets with common-coil configuration are under development at IHEP (the Institute of High Energy Physics, Chinese Academy of Sciences) for key technology pre-study of high energy colliders. A model magnet named LPF1 has been fabricated and tested in 2018, which was made up of four flat racetrack NbTi coils and two flat racetrack Nb3Sn coils, and a main dipole field of 10.2 T has been reached in the two apertures at 4.2 K. A new model magnet LPF2 is being designed and fabricated in 2019, with four new Nb 3 Sn coils included comparing with LPF1, and the magnet is expected to reach a much higher field. To reduce the field enhancement at the coil ends, the newly fabricated Nb 3 Sn coils are designed with different straight lengths and bending radii. This hybrid dipole magnet is designed to provide a 12-T main field in the two apertures with an operating current of 5300 A, corresponding to a load line ratio of 78% at 4.2 K. A single-pancake racetrack IBS (Iron-based superconducting) coil wound with a 100-m IBS tape would be inserted into the middle of the magnet (between the inner-most two Nb 3 Sn coils). This magnet is also used to test the IBS coil performance under high field and high stress. The main design parameters, fabrication process of the magnet will be presented.</description><subject>accelerator magnet</subject><subject>Apertures</subject><subject>Bend radius</subject><subject>Coils</subject><subject>Design</subject><subject>Design parameters</subject><subject>Dipoles</subject><subject>Glass</subject><subject>Heat treatment</subject><subject>High field</subject><subject>hybrid dipole</subject><subject>iron-based superconductor</subject><subject>Magnetomechanical effects</subject><subject>Magnets</subject><subject>Niobium-tin</subject><subject>Power cables</subject><subject>Process parameters</subject><subject>Racetracks</subject><subject>Stress</subject><subject>Superconducting magnets</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zk48u9W52mxtMFDbxssQ0nRltMpPuYv_e1ok35xw47wc8CN0CGQGQ7GEzWecjSiAb0SylQOEMDUAImVAB4ry7iYBEUsou0VWMO0KASy4GyM1qo9vgG7V1prUaT020W4eVK_FcfQarVWu9w77Cq7c5fcQTDDTZ4MWx-5U4903jXZJ7W-Op3fva4JffJPxh2y-8dNGE1pR4-bTGvegaXVSqjubmbw_R-3y2yRfJ6vV5mU9WiaYZaxOdlkBSYBI001JkKdcpy0DRMQeAitJUp1wRksFYcGMILzVRymgqZDcVYUN0f8rdB_99MLEtdv4QXFdZUMZlR4x3RUMEJ5UOPsZgqmIfbKPCsQBS9FiLHmvRYy3-sHaeu5PHGmP-9TLjwAhjP3rLcII</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Wang, Chengtao</creator><creator>Yang, Xiangchen</creator><creator>Zhang, Zhan</creator><creator>Wang, Yingzhe</creator><creator>Kong, Ershuai</creator><creator>Zhang, Zhen</creator><creator>Shi, Jinrui</creator><creator>Wei, Shaoqing</creator><creator>Yao, Huanli</creator><creator>Wang, Juan</creator><creator>Gong, Lingling</creator><creator>Zhou, Jianxin</creator><creator>Peng, Quanling</creator><creator>Bian, Xiaojuan</creator><creator>Chen, Fusan</creator><creator>Xu, Qingjin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8113-6852</orcidid><orcidid>https://orcid.org/0000-0002-2812-2697</orcidid><orcidid>https://orcid.org/0000-0001-8760-2562</orcidid><orcidid>https://orcid.org/0000-0002-1754-8668</orcidid></search><sort><creationdate>20200601</creationdate><title>Electromagnetic Design and Fabrication of LPF2: A 12-T Hybrid Common-Coil Dipole Magnet With Inserted IBS Coil</title><author>Wang, Chengtao ; Yang, Xiangchen ; Zhang, Zhan ; Wang, Yingzhe ; Kong, Ershuai ; Zhang, Zhen ; Shi, Jinrui ; Wei, Shaoqing ; Yao, Huanli ; Wang, Juan ; Gong, Lingling ; Zhou, Jianxin ; Peng, Quanling ; Bian, Xiaojuan ; Chen, Fusan ; Xu, Qingjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c6d1061381c3c85964c6391a274111f226c64a0091754ee04dc0aaec258aeca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>accelerator magnet</topic><topic>Apertures</topic><topic>Bend radius</topic><topic>Coils</topic><topic>Design</topic><topic>Design parameters</topic><topic>Dipoles</topic><topic>Glass</topic><topic>Heat treatment</topic><topic>High field</topic><topic>hybrid dipole</topic><topic>iron-based superconductor</topic><topic>Magnetomechanical effects</topic><topic>Magnets</topic><topic>Niobium-tin</topic><topic>Power cables</topic><topic>Process parameters</topic><topic>Racetracks</topic><topic>Stress</topic><topic>Superconducting magnets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chengtao</creatorcontrib><creatorcontrib>Yang, Xiangchen</creatorcontrib><creatorcontrib>Zhang, Zhan</creatorcontrib><creatorcontrib>Wang, Yingzhe</creatorcontrib><creatorcontrib>Kong, Ershuai</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Shi, Jinrui</creatorcontrib><creatorcontrib>Wei, Shaoqing</creatorcontrib><creatorcontrib>Yao, Huanli</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Gong, Lingling</creatorcontrib><creatorcontrib>Zhou, Jianxin</creatorcontrib><creatorcontrib>Peng, Quanling</creatorcontrib><creatorcontrib>Bian, Xiaojuan</creatorcontrib><creatorcontrib>Chen, Fusan</creatorcontrib><creatorcontrib>Xu, Qingjin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Chengtao</au><au>Yang, Xiangchen</au><au>Zhang, Zhan</au><au>Wang, Yingzhe</au><au>Kong, Ershuai</au><au>Zhang, Zhen</au><au>Shi, Jinrui</au><au>Wei, Shaoqing</au><au>Yao, Huanli</au><au>Wang, Juan</au><au>Gong, Lingling</au><au>Zhou, Jianxin</au><au>Peng, Quanling</au><au>Bian, Xiaojuan</au><au>Chen, Fusan</au><au>Xu, Qingjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic Design and Fabrication of LPF2: A 12-T Hybrid Common-Coil Dipole Magnet With Inserted IBS Coil</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>30</volume><issue>4</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>High field dipole magnets with common-coil configuration are under development at IHEP (the Institute of High Energy Physics, Chinese Academy of Sciences) for key technology pre-study of high energy colliders. A model magnet named LPF1 has been fabricated and tested in 2018, which was made up of four flat racetrack NbTi coils and two flat racetrack Nb3Sn coils, and a main dipole field of 10.2 T has been reached in the two apertures at 4.2 K. A new model magnet LPF2 is being designed and fabricated in 2019, with four new Nb 3 Sn coils included comparing with LPF1, and the magnet is expected to reach a much higher field. To reduce the field enhancement at the coil ends, the newly fabricated Nb 3 Sn coils are designed with different straight lengths and bending radii. This hybrid dipole magnet is designed to provide a 12-T main field in the two apertures with an operating current of 5300 A, corresponding to a load line ratio of 78% at 4.2 K. A single-pancake racetrack IBS (Iron-based superconducting) coil wound with a 100-m IBS tape would be inserted into the middle of the magnet (between the inner-most two Nb 3 Sn coils). This magnet is also used to test the IBS coil performance under high field and high stress. The main design parameters, fabrication process of the magnet will be presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2019.2962121</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8113-6852</orcidid><orcidid>https://orcid.org/0000-0002-2812-2697</orcidid><orcidid>https://orcid.org/0000-0001-8760-2562</orcidid><orcidid>https://orcid.org/0000-0002-1754-8668</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2020-06, Vol.30 (4), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_8941303
source IEEE Electronic Library (IEL)
subjects accelerator magnet
Apertures
Bend radius
Coils
Design
Design parameters
Dipoles
Glass
Heat treatment
High field
hybrid dipole
iron-based superconductor
Magnetomechanical effects
Magnets
Niobium-tin
Power cables
Process parameters
Racetracks
Stress
Superconducting magnets
title Electromagnetic Design and Fabrication of LPF2: A 12-T Hybrid Common-Coil Dipole Magnet With Inserted IBS Coil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20Design%20and%20Fabrication%20of%20LPF2:%20A%2012-T%20Hybrid%20Common-Coil%20Dipole%20Magnet%20With%20Inserted%20IBS%20Coil&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Wang,%20Chengtao&rft.date=2020-06-01&rft.volume=30&rft.issue=4&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2019.2962121&rft_dat=%3Cproquest_RIE%3E2348109429%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348109429&rft_id=info:pmid/&rft_ieee_id=8941303&rfr_iscdi=true