Electromagnetic Design and Fabrication of LPF2: A 12-T Hybrid Common-Coil Dipole Magnet With Inserted IBS Coil
High field dipole magnets with common-coil configuration are under development at IHEP (the Institute of High Energy Physics, Chinese Academy of Sciences) for key technology pre-study of high energy colliders. A model magnet named LPF1 has been fabricated and tested in 2018, which was made up of fou...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2020-06, Vol.30 (4), p.1-5 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 30 |
creator | Wang, Chengtao Yang, Xiangchen Zhang, Zhan Wang, Yingzhe Kong, Ershuai Zhang, Zhen Shi, Jinrui Wei, Shaoqing Yao, Huanli Wang, Juan Gong, Lingling Zhou, Jianxin Peng, Quanling Bian, Xiaojuan Chen, Fusan Xu, Qingjin |
description | High field dipole magnets with common-coil configuration are under development at IHEP (the Institute of High Energy Physics, Chinese Academy of Sciences) for key technology pre-study of high energy colliders. A model magnet named LPF1 has been fabricated and tested in 2018, which was made up of four flat racetrack NbTi coils and two flat racetrack Nb3Sn coils, and a main dipole field of 10.2 T has been reached in the two apertures at 4.2 K. A new model magnet LPF2 is being designed and fabricated in 2019, with four new Nb 3 Sn coils included comparing with LPF1, and the magnet is expected to reach a much higher field. To reduce the field enhancement at the coil ends, the newly fabricated Nb 3 Sn coils are designed with different straight lengths and bending radii. This hybrid dipole magnet is designed to provide a 12-T main field in the two apertures with an operating current of 5300 A, corresponding to a load line ratio of 78% at 4.2 K. A single-pancake racetrack IBS (Iron-based superconducting) coil wound with a 100-m IBS tape would be inserted into the middle of the magnet (between the inner-most two Nb 3 Sn coils). This magnet is also used to test the IBS coil performance under high field and high stress. The main design parameters, fabrication process of the magnet will be presented. |
doi_str_mv | 10.1109/TASC.2019.2962121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8941303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8941303</ieee_id><sourcerecordid>2348109429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c6d1061381c3c85964c6391a274111f226c64a0091754ee04dc0aaec258aeca03</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zk48u9W52mxtMFDbxssQ0nRltMpPuYv_e1ok35xw47wc8CN0CGQGQ7GEzWecjSiAb0SylQOEMDUAImVAB4ry7iYBEUsou0VWMO0KASy4GyM1qo9vgG7V1prUaT020W4eVK_FcfQarVWu9w77Cq7c5fcQTDDTZ4MWx-5U4903jXZJ7W-Op3fva4JffJPxh2y-8dNGE1pR4-bTGvegaXVSqjubmbw_R-3y2yRfJ6vV5mU9WiaYZaxOdlkBSYBI001JkKdcpy0DRMQeAitJUp1wRksFYcGMILzVRymgqZDcVYUN0f8rdB_99MLEtdv4QXFdZUMZlR4x3RUMEJ5UOPsZgqmIfbKPCsQBS9FiLHmvRYy3-sHaeu5PHGmP-9TLjwAhjP3rLcII</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348109429</pqid></control><display><type>article</type><title>Electromagnetic Design and Fabrication of LPF2: A 12-T Hybrid Common-Coil Dipole Magnet With Inserted IBS Coil</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Chengtao ; Yang, Xiangchen ; Zhang, Zhan ; Wang, Yingzhe ; Kong, Ershuai ; Zhang, Zhen ; Shi, Jinrui ; Wei, Shaoqing ; Yao, Huanli ; Wang, Juan ; Gong, Lingling ; Zhou, Jianxin ; Peng, Quanling ; Bian, Xiaojuan ; Chen, Fusan ; Xu, Qingjin</creator><creatorcontrib>Wang, Chengtao ; Yang, Xiangchen ; Zhang, Zhan ; Wang, Yingzhe ; Kong, Ershuai ; Zhang, Zhen ; Shi, Jinrui ; Wei, Shaoqing ; Yao, Huanli ; Wang, Juan ; Gong, Lingling ; Zhou, Jianxin ; Peng, Quanling ; Bian, Xiaojuan ; Chen, Fusan ; Xu, Qingjin</creatorcontrib><description>High field dipole magnets with common-coil configuration are under development at IHEP (the Institute of High Energy Physics, Chinese Academy of Sciences) for key technology pre-study of high energy colliders. A model magnet named LPF1 has been fabricated and tested in 2018, which was made up of four flat racetrack NbTi coils and two flat racetrack Nb3Sn coils, and a main dipole field of 10.2 T has been reached in the two apertures at 4.2 K. A new model magnet LPF2 is being designed and fabricated in 2019, with four new Nb 3 Sn coils included comparing with LPF1, and the magnet is expected to reach a much higher field. To reduce the field enhancement at the coil ends, the newly fabricated Nb 3 Sn coils are designed with different straight lengths and bending radii. This hybrid dipole magnet is designed to provide a 12-T main field in the two apertures with an operating current of 5300 A, corresponding to a load line ratio of 78% at 4.2 K. A single-pancake racetrack IBS (Iron-based superconducting) coil wound with a 100-m IBS tape would be inserted into the middle of the magnet (between the inner-most two Nb 3 Sn coils). This magnet is also used to test the IBS coil performance under high field and high stress. The main design parameters, fabrication process of the magnet will be presented.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2019.2962121</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>accelerator magnet ; Apertures ; Bend radius ; Coils ; Design ; Design parameters ; Dipoles ; Glass ; Heat treatment ; High field ; hybrid dipole ; iron-based superconductor ; Magnetomechanical effects ; Magnets ; Niobium-tin ; Power cables ; Process parameters ; Racetracks ; Stress ; Superconducting magnets</subject><ispartof>IEEE transactions on applied superconductivity, 2020-06, Vol.30 (4), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c6d1061381c3c85964c6391a274111f226c64a0091754ee04dc0aaec258aeca03</citedby><cites>FETCH-LOGICAL-c293t-c6d1061381c3c85964c6391a274111f226c64a0091754ee04dc0aaec258aeca03</cites><orcidid>0000-0002-8113-6852 ; 0000-0002-2812-2697 ; 0000-0001-8760-2562 ; 0000-0002-1754-8668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8941303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8941303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Chengtao</creatorcontrib><creatorcontrib>Yang, Xiangchen</creatorcontrib><creatorcontrib>Zhang, Zhan</creatorcontrib><creatorcontrib>Wang, Yingzhe</creatorcontrib><creatorcontrib>Kong, Ershuai</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Shi, Jinrui</creatorcontrib><creatorcontrib>Wei, Shaoqing</creatorcontrib><creatorcontrib>Yao, Huanli</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Gong, Lingling</creatorcontrib><creatorcontrib>Zhou, Jianxin</creatorcontrib><creatorcontrib>Peng, Quanling</creatorcontrib><creatorcontrib>Bian, Xiaojuan</creatorcontrib><creatorcontrib>Chen, Fusan</creatorcontrib><creatorcontrib>Xu, Qingjin</creatorcontrib><title>Electromagnetic Design and Fabrication of LPF2: A 12-T Hybrid Common-Coil Dipole Magnet With Inserted IBS Coil</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>High field dipole magnets with common-coil configuration are under development at IHEP (the Institute of High Energy Physics, Chinese Academy of Sciences) for key technology pre-study of high energy colliders. A model magnet named LPF1 has been fabricated and tested in 2018, which was made up of four flat racetrack NbTi coils and two flat racetrack Nb3Sn coils, and a main dipole field of 10.2 T has been reached in the two apertures at 4.2 K. A new model magnet LPF2 is being designed and fabricated in 2019, with four new Nb 3 Sn coils included comparing with LPF1, and the magnet is expected to reach a much higher field. To reduce the field enhancement at the coil ends, the newly fabricated Nb 3 Sn coils are designed with different straight lengths and bending radii. This hybrid dipole magnet is designed to provide a 12-T main field in the two apertures with an operating current of 5300 A, corresponding to a load line ratio of 78% at 4.2 K. A single-pancake racetrack IBS (Iron-based superconducting) coil wound with a 100-m IBS tape would be inserted into the middle of the magnet (between the inner-most two Nb 3 Sn coils). This magnet is also used to test the IBS coil performance under high field and high stress. The main design parameters, fabrication process of the magnet will be presented.</description><subject>accelerator magnet</subject><subject>Apertures</subject><subject>Bend radius</subject><subject>Coils</subject><subject>Design</subject><subject>Design parameters</subject><subject>Dipoles</subject><subject>Glass</subject><subject>Heat treatment</subject><subject>High field</subject><subject>hybrid dipole</subject><subject>iron-based superconductor</subject><subject>Magnetomechanical effects</subject><subject>Magnets</subject><subject>Niobium-tin</subject><subject>Power cables</subject><subject>Process parameters</subject><subject>Racetracks</subject><subject>Stress</subject><subject>Superconducting magnets</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zk48u9W52mxtMFDbxssQ0nRltMpPuYv_e1ok35xw47wc8CN0CGQGQ7GEzWecjSiAb0SylQOEMDUAImVAB4ry7iYBEUsou0VWMO0KASy4GyM1qo9vgG7V1prUaT020W4eVK_FcfQarVWu9w77Cq7c5fcQTDDTZ4MWx-5U4903jXZJ7W-Op3fva4JffJPxh2y-8dNGE1pR4-bTGvegaXVSqjubmbw_R-3y2yRfJ6vV5mU9WiaYZaxOdlkBSYBI001JkKdcpy0DRMQeAitJUp1wRksFYcGMILzVRymgqZDcVYUN0f8rdB_99MLEtdv4QXFdZUMZlR4x3RUMEJ5UOPsZgqmIfbKPCsQBS9FiLHmvRYy3-sHaeu5PHGmP-9TLjwAhjP3rLcII</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Wang, Chengtao</creator><creator>Yang, Xiangchen</creator><creator>Zhang, Zhan</creator><creator>Wang, Yingzhe</creator><creator>Kong, Ershuai</creator><creator>Zhang, Zhen</creator><creator>Shi, Jinrui</creator><creator>Wei, Shaoqing</creator><creator>Yao, Huanli</creator><creator>Wang, Juan</creator><creator>Gong, Lingling</creator><creator>Zhou, Jianxin</creator><creator>Peng, Quanling</creator><creator>Bian, Xiaojuan</creator><creator>Chen, Fusan</creator><creator>Xu, Qingjin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8113-6852</orcidid><orcidid>https://orcid.org/0000-0002-2812-2697</orcidid><orcidid>https://orcid.org/0000-0001-8760-2562</orcidid><orcidid>https://orcid.org/0000-0002-1754-8668</orcidid></search><sort><creationdate>20200601</creationdate><title>Electromagnetic Design and Fabrication of LPF2: A 12-T Hybrid Common-Coil Dipole Magnet With Inserted IBS Coil</title><author>Wang, Chengtao ; Yang, Xiangchen ; Zhang, Zhan ; Wang, Yingzhe ; Kong, Ershuai ; Zhang, Zhen ; Shi, Jinrui ; Wei, Shaoqing ; Yao, Huanli ; Wang, Juan ; Gong, Lingling ; Zhou, Jianxin ; Peng, Quanling ; Bian, Xiaojuan ; Chen, Fusan ; Xu, Qingjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c6d1061381c3c85964c6391a274111f226c64a0091754ee04dc0aaec258aeca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>accelerator magnet</topic><topic>Apertures</topic><topic>Bend radius</topic><topic>Coils</topic><topic>Design</topic><topic>Design parameters</topic><topic>Dipoles</topic><topic>Glass</topic><topic>Heat treatment</topic><topic>High field</topic><topic>hybrid dipole</topic><topic>iron-based superconductor</topic><topic>Magnetomechanical effects</topic><topic>Magnets</topic><topic>Niobium-tin</topic><topic>Power cables</topic><topic>Process parameters</topic><topic>Racetracks</topic><topic>Stress</topic><topic>Superconducting magnets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chengtao</creatorcontrib><creatorcontrib>Yang, Xiangchen</creatorcontrib><creatorcontrib>Zhang, Zhan</creatorcontrib><creatorcontrib>Wang, Yingzhe</creatorcontrib><creatorcontrib>Kong, Ershuai</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Shi, Jinrui</creatorcontrib><creatorcontrib>Wei, Shaoqing</creatorcontrib><creatorcontrib>Yao, Huanli</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Gong, Lingling</creatorcontrib><creatorcontrib>Zhou, Jianxin</creatorcontrib><creatorcontrib>Peng, Quanling</creatorcontrib><creatorcontrib>Bian, Xiaojuan</creatorcontrib><creatorcontrib>Chen, Fusan</creatorcontrib><creatorcontrib>Xu, Qingjin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Chengtao</au><au>Yang, Xiangchen</au><au>Zhang, Zhan</au><au>Wang, Yingzhe</au><au>Kong, Ershuai</au><au>Zhang, Zhen</au><au>Shi, Jinrui</au><au>Wei, Shaoqing</au><au>Yao, Huanli</au><au>Wang, Juan</au><au>Gong, Lingling</au><au>Zhou, Jianxin</au><au>Peng, Quanling</au><au>Bian, Xiaojuan</au><au>Chen, Fusan</au><au>Xu, Qingjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic Design and Fabrication of LPF2: A 12-T Hybrid Common-Coil Dipole Magnet With Inserted IBS Coil</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>30</volume><issue>4</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>High field dipole magnets with common-coil configuration are under development at IHEP (the Institute of High Energy Physics, Chinese Academy of Sciences) for key technology pre-study of high energy colliders. A model magnet named LPF1 has been fabricated and tested in 2018, which was made up of four flat racetrack NbTi coils and two flat racetrack Nb3Sn coils, and a main dipole field of 10.2 T has been reached in the two apertures at 4.2 K. A new model magnet LPF2 is being designed and fabricated in 2019, with four new Nb 3 Sn coils included comparing with LPF1, and the magnet is expected to reach a much higher field. To reduce the field enhancement at the coil ends, the newly fabricated Nb 3 Sn coils are designed with different straight lengths and bending radii. This hybrid dipole magnet is designed to provide a 12-T main field in the two apertures with an operating current of 5300 A, corresponding to a load line ratio of 78% at 4.2 K. A single-pancake racetrack IBS (Iron-based superconducting) coil wound with a 100-m IBS tape would be inserted into the middle of the magnet (between the inner-most two Nb 3 Sn coils). This magnet is also used to test the IBS coil performance under high field and high stress. The main design parameters, fabrication process of the magnet will be presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2019.2962121</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8113-6852</orcidid><orcidid>https://orcid.org/0000-0002-2812-2697</orcidid><orcidid>https://orcid.org/0000-0001-8760-2562</orcidid><orcidid>https://orcid.org/0000-0002-1754-8668</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2020-06, Vol.30 (4), p.1-5 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_8941303 |
source | IEEE Electronic Library (IEL) |
subjects | accelerator magnet Apertures Bend radius Coils Design Design parameters Dipoles Glass Heat treatment High field hybrid dipole iron-based superconductor Magnetomechanical effects Magnets Niobium-tin Power cables Process parameters Racetracks Stress Superconducting magnets |
title | Electromagnetic Design and Fabrication of LPF2: A 12-T Hybrid Common-Coil Dipole Magnet With Inserted IBS Coil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20Design%20and%20Fabrication%20of%20LPF2:%20A%2012-T%20Hybrid%20Common-Coil%20Dipole%20Magnet%20With%20Inserted%20IBS%20Coil&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Wang,%20Chengtao&rft.date=2020-06-01&rft.volume=30&rft.issue=4&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2019.2962121&rft_dat=%3Cproquest_RIE%3E2348109429%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348109429&rft_id=info:pmid/&rft_ieee_id=8941303&rfr_iscdi=true |