Remaining Useful Life Prediction Based on an Adaptive Inverse Gaussian Degradation Process With Measurement Errors
Remaining useful life (RUL) prediction plays a crucial role in prognostics and health management (PHM). Recently, the adaptive model-based RUL prediction, which is proven effective and flexible, has gained considerable attention. Most research on adaptive degradation models focuses on the Wiener pro...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.3498-3510 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3510 |
---|---|
container_issue | |
container_start_page | 3498 |
container_title | IEEE access |
container_volume | 8 |
creator | Chen, Xudan Sun, Xinli Si, Xiaosheng Li, Guodong |
description | Remaining useful life (RUL) prediction plays a crucial role in prognostics and health management (PHM). Recently, the adaptive model-based RUL prediction, which is proven effective and flexible, has gained considerable attention. Most research on adaptive degradation models focuses on the Wiener process. However, since the degradation process of some products is accumulated and irreversible, the inverse Gaussian (IG) process that can describe monotonic degradation paths is a natural choice for degradation modelling. This article proposes a nonlinear adaptive IG process along with the corresponding state space model considering measurement errors. Then, an improved particle filtering algorithm is presented to update the degradation parameter and estimate the underlying degradation state under the nonGaussian assumptions in the state space model. The RUL prediction depending on historical degradation data is derived based on the results of particle methods, which can avoid high-dimensional integration. In addition, the expectation-maximization (EM) algorithm combined with an improved particle smoother is developed to estimate and adaptively update the unknown model parameters once newly monitored degradation data become available. Finally, this article concludes with a simulation study and a case application to demonstrate the applicability and superiority of the proposed method. |
doi_str_mv | 10.1109/ACCESS.2019.2961951 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8941060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8941060</ieee_id><doaj_id>oai_doaj_org_article_42aa64f6bd4146c7bfc3845e6e270099</doaj_id><sourcerecordid>2454793584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-28c46aee581f85ba09845871ffb7d037adaf5a41eff5d8106bb687c489a4c67b3</originalsourceid><addsrcrecordid>eNpNUU1PGzEQXaFWAgG_gIulnpPau_48pmmgkYJApahHa9Y7Th0l62DvIvHva1iEmMuMZua9N6NXVVeMzhmj5vtiuVw9PMxrysy8NpIZwU6qs5pJM2tEI798qk-ry5x3tIQuLaHOqvQbDxD60G_JY0Y_7skmeCT3CbvghhB78gMydqQU0JNFB8chPCNZ98-YMpIbGHMOZfITtwk6eEPcp-gwZ_I3DP_ILUIeEx6wH8gqpZjyRfXVwz7j5Xs-rx6vV3-Wv2abu5v1crGZOU71MKu14xIQhWZeixao0VxoxbxvVUcbVdS8AM7Qe9FpRmXbSq0c1wa4k6ptzqv1xNtF2NljCgdILzZCsG-NmLYW0hDcHi2vAST3su0449Kp1rumqKHEWlFqTOH6NnEdU3waMQ92F8fUl_NtzQVXphGal61m2nIp5pzQf6gyal-9spNX9tUr--5VQV1NqICIHwhtePmJNv8Byg-QjQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454793584</pqid></control><display><type>article</type><title>Remaining Useful Life Prediction Based on an Adaptive Inverse Gaussian Degradation Process With Measurement Errors</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Xudan ; Sun, Xinli ; Si, Xiaosheng ; Li, Guodong</creator><creatorcontrib>Chen, Xudan ; Sun, Xinli ; Si, Xiaosheng ; Li, Guodong</creatorcontrib><description>Remaining useful life (RUL) prediction plays a crucial role in prognostics and health management (PHM). Recently, the adaptive model-based RUL prediction, which is proven effective and flexible, has gained considerable attention. Most research on adaptive degradation models focuses on the Wiener process. However, since the degradation process of some products is accumulated and irreversible, the inverse Gaussian (IG) process that can describe monotonic degradation paths is a natural choice for degradation modelling. This article proposes a nonlinear adaptive IG process along with the corresponding state space model considering measurement errors. Then, an improved particle filtering algorithm is presented to update the degradation parameter and estimate the underlying degradation state under the nonGaussian assumptions in the state space model. The RUL prediction depending on historical degradation data is derived based on the results of particle methods, which can avoid high-dimensional integration. In addition, the expectation-maximization (EM) algorithm combined with an improved particle smoother is developed to estimate and adaptively update the unknown model parameters once newly monitored degradation data become available. Finally, this article concludes with a simulation study and a case application to demonstrate the applicability and superiority of the proposed method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2961951</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive model ; Algorithms ; Corresponding states ; Data models ; Degradation ; Gaussian process ; inverse Gaussian process ; Life prediction ; Measurement errors ; Parameter estimation ; Particle methods (mathematics) ; Predictive models ; Prognostics and health management ; Reliability ; remaining useful life ; State space models ; Useful life</subject><ispartof>IEEE access, 2020, Vol.8, p.3498-3510</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-28c46aee581f85ba09845871ffb7d037adaf5a41eff5d8106bb687c489a4c67b3</citedby><cites>FETCH-LOGICAL-c408t-28c46aee581f85ba09845871ffb7d037adaf5a41eff5d8106bb687c489a4c67b3</cites><orcidid>0000-0001-5226-9923 ; 0000-0003-0132-0105 ; 0000-0003-1350-8850 ; 0000-0002-3091-4343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8941060$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Chen, Xudan</creatorcontrib><creatorcontrib>Sun, Xinli</creatorcontrib><creatorcontrib>Si, Xiaosheng</creatorcontrib><creatorcontrib>Li, Guodong</creatorcontrib><title>Remaining Useful Life Prediction Based on an Adaptive Inverse Gaussian Degradation Process With Measurement Errors</title><title>IEEE access</title><addtitle>Access</addtitle><description>Remaining useful life (RUL) prediction plays a crucial role in prognostics and health management (PHM). Recently, the adaptive model-based RUL prediction, which is proven effective and flexible, has gained considerable attention. Most research on adaptive degradation models focuses on the Wiener process. However, since the degradation process of some products is accumulated and irreversible, the inverse Gaussian (IG) process that can describe monotonic degradation paths is a natural choice for degradation modelling. This article proposes a nonlinear adaptive IG process along with the corresponding state space model considering measurement errors. Then, an improved particle filtering algorithm is presented to update the degradation parameter and estimate the underlying degradation state under the nonGaussian assumptions in the state space model. The RUL prediction depending on historical degradation data is derived based on the results of particle methods, which can avoid high-dimensional integration. In addition, the expectation-maximization (EM) algorithm combined with an improved particle smoother is developed to estimate and adaptively update the unknown model parameters once newly monitored degradation data become available. Finally, this article concludes with a simulation study and a case application to demonstrate the applicability and superiority of the proposed method.</description><subject>Adaptation models</subject><subject>Adaptive model</subject><subject>Algorithms</subject><subject>Corresponding states</subject><subject>Data models</subject><subject>Degradation</subject><subject>Gaussian process</subject><subject>inverse Gaussian process</subject><subject>Life prediction</subject><subject>Measurement errors</subject><subject>Parameter estimation</subject><subject>Particle methods (mathematics)</subject><subject>Predictive models</subject><subject>Prognostics and health management</subject><subject>Reliability</subject><subject>remaining useful life</subject><subject>State space models</subject><subject>Useful life</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PGzEQXaFWAgG_gIulnpPau_48pmmgkYJApahHa9Y7Th0l62DvIvHva1iEmMuMZua9N6NXVVeMzhmj5vtiuVw9PMxrysy8NpIZwU6qs5pJM2tEI798qk-ry5x3tIQuLaHOqvQbDxD60G_JY0Y_7skmeCT3CbvghhB78gMydqQU0JNFB8chPCNZ98-YMpIbGHMOZfITtwk6eEPcp-gwZ_I3DP_ILUIeEx6wH8gqpZjyRfXVwz7j5Xs-rx6vV3-Wv2abu5v1crGZOU71MKu14xIQhWZeixao0VxoxbxvVUcbVdS8AM7Qe9FpRmXbSq0c1wa4k6ptzqv1xNtF2NljCgdILzZCsG-NmLYW0hDcHi2vAST3su0449Kp1rumqKHEWlFqTOH6NnEdU3waMQ92F8fUl_NtzQVXphGal61m2nIp5pzQf6gyal-9spNX9tUr--5VQV1NqICIHwhtePmJNv8Byg-QjQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Chen, Xudan</creator><creator>Sun, Xinli</creator><creator>Si, Xiaosheng</creator><creator>Li, Guodong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5226-9923</orcidid><orcidid>https://orcid.org/0000-0003-0132-0105</orcidid><orcidid>https://orcid.org/0000-0003-1350-8850</orcidid><orcidid>https://orcid.org/0000-0002-3091-4343</orcidid></search><sort><creationdate>2020</creationdate><title>Remaining Useful Life Prediction Based on an Adaptive Inverse Gaussian Degradation Process With Measurement Errors</title><author>Chen, Xudan ; Sun, Xinli ; Si, Xiaosheng ; Li, Guodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-28c46aee581f85ba09845871ffb7d037adaf5a41eff5d8106bb687c489a4c67b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation models</topic><topic>Adaptive model</topic><topic>Algorithms</topic><topic>Corresponding states</topic><topic>Data models</topic><topic>Degradation</topic><topic>Gaussian process</topic><topic>inverse Gaussian process</topic><topic>Life prediction</topic><topic>Measurement errors</topic><topic>Parameter estimation</topic><topic>Particle methods (mathematics)</topic><topic>Predictive models</topic><topic>Prognostics and health management</topic><topic>Reliability</topic><topic>remaining useful life</topic><topic>State space models</topic><topic>Useful life</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xudan</creatorcontrib><creatorcontrib>Sun, Xinli</creatorcontrib><creatorcontrib>Si, Xiaosheng</creatorcontrib><creatorcontrib>Li, Guodong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xudan</au><au>Sun, Xinli</au><au>Si, Xiaosheng</au><au>Li, Guodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remaining Useful Life Prediction Based on an Adaptive Inverse Gaussian Degradation Process With Measurement Errors</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>3498</spage><epage>3510</epage><pages>3498-3510</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Remaining useful life (RUL) prediction plays a crucial role in prognostics and health management (PHM). Recently, the adaptive model-based RUL prediction, which is proven effective and flexible, has gained considerable attention. Most research on adaptive degradation models focuses on the Wiener process. However, since the degradation process of some products is accumulated and irreversible, the inverse Gaussian (IG) process that can describe monotonic degradation paths is a natural choice for degradation modelling. This article proposes a nonlinear adaptive IG process along with the corresponding state space model considering measurement errors. Then, an improved particle filtering algorithm is presented to update the degradation parameter and estimate the underlying degradation state under the nonGaussian assumptions in the state space model. The RUL prediction depending on historical degradation data is derived based on the results of particle methods, which can avoid high-dimensional integration. In addition, the expectation-maximization (EM) algorithm combined with an improved particle smoother is developed to estimate and adaptively update the unknown model parameters once newly monitored degradation data become available. Finally, this article concludes with a simulation study and a case application to demonstrate the applicability and superiority of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2961951</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5226-9923</orcidid><orcidid>https://orcid.org/0000-0003-0132-0105</orcidid><orcidid>https://orcid.org/0000-0003-1350-8850</orcidid><orcidid>https://orcid.org/0000-0002-3091-4343</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.3498-3510 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8941060 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptation models Adaptive model Algorithms Corresponding states Data models Degradation Gaussian process inverse Gaussian process Life prediction Measurement errors Parameter estimation Particle methods (mathematics) Predictive models Prognostics and health management Reliability remaining useful life State space models Useful life |
title | Remaining Useful Life Prediction Based on an Adaptive Inverse Gaussian Degradation Process With Measurement Errors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A15%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remaining%20Useful%20Life%20Prediction%20Based%20on%20an%20Adaptive%20Inverse%20Gaussian%20Degradation%20Process%20With%20Measurement%20Errors&rft.jtitle=IEEE%20access&rft.au=Chen,%20Xudan&rft.date=2020&rft.volume=8&rft.spage=3498&rft.epage=3510&rft.pages=3498-3510&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2961951&rft_dat=%3Cproquest_ieee_%3E2454793584%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454793584&rft_id=info:pmid/&rft_ieee_id=8941060&rft_doaj_id=oai_doaj_org_article_42aa64f6bd4146c7bfc3845e6e270099&rfr_iscdi=true |