Seismic Random Noise Attenuation Based on PCC Classification in Transform Domain
Random noise attenuation of seismic data is an essential step in the processing of seismic signals. However, as the exploration environment is becoming more and more complicated, the energy of valid signals is weaker and the signal to noise (SNR) is much lower, which brings great difficulty to seism...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.30368-30377 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30377 |
---|---|
container_issue | |
container_start_page | 30368 |
container_title | IEEE access |
container_volume | 8 |
creator | Sang, Yu Sun, Jinguang Meng, Xiangfu Jin, Haibo Peng, Yanfei Zhang, Xinjun |
description | Random noise attenuation of seismic data is an essential step in the processing of seismic signals. However, as the exploration environment is becoming more and more complicated, the energy of valid signals is weaker and the signal to noise (SNR) is much lower, which brings great difficulty to seismic data processing and interpretation. To this end, we propose an unconventional and effective seismic random noise attenuation method based on proximal classifier with consistency (PCC) in transform domain. Firstly, we analyze various transforms for seismic data from traditional wavelet transform and curvelet transform to emerging non-subsampled shearlet transform (NSST) and non-subsampled contourlet transform (NSCT). And, we select the excellent NSST to decompose the noisy seismic data into different sub-bands of frequency and orientation responses. Secondly, unlike traditional sparse transform based seismic denoising methods that often directly use a thresholding operator and corresponding inverse transform to denoise seismic data, our proposed method employs a superior performance PCC to classify the NSST coefficients of seismic data before thresholding operator. The added step can effectively divide the NSST coefficients into reflected useful signal coefficients and noise-related coefficients, which can preserve the edge of reflected signals and keep the information of events intact as much as possible. In addition, we also introduce an adaptive threshold computing method and a soft-thresholding method to achieve seismic data denoising better. Finally, the experimental results on the typical synthetic example and real seismic data show the superior performance of the proposed method. |
doi_str_mv | 10.1109/ACCESS.2019.2959024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8939375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8939375</ieee_id><doaj_id>oai_doaj_org_article_8e8501b6408b4d7cb95ec04e259d16e1</doaj_id><sourcerecordid>2454927193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-aacf6d350f2e0e2d2c59696f3ae745c97869294d8f7ef15be253b79d57fb28eb3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOgXcInEucWPOM4eS3hVQlBROFuOvUaumhjs9MDfYwhC7GVXszszK01RnFOyoJTA5bJtbzabBSMUFgwEEFYdFCeM1jDngteH_-bjYpbSluRqMiTkSbHeoE-9N-WzHmzoy8fgE5bLccRhr0cfhvJKJ7RlHtZtW7Y7nZJ33kw7P5QvUQ_JhdiX16HXfjgrjpzeJZz99tPi9fbmpb2fPzzdrdrlw9xUpBnnWhtXWy6IY0iQWWYE1FA7rlFWwoBsamBQ2cZJdFR0yATvJFghXcca7PhpsZp0bdBb9R59r-OnCtqrHyDEN6Xj6M0OVYONILSrs3FXWWk6EGhIlSXB0hpp1rqYtN5j-NhjGtU27OOQ31esEhUwSYHnKz5dmRhSiuj-XClR30moKQn1nYT6TSKzzieWR8Q_RgMcuBT8C9DPg5I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454927193</pqid></control><display><type>article</type><title>Seismic Random Noise Attenuation Based on PCC Classification in Transform Domain</title><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>IEEE Xplore Open Access Journals</source><creator>Sang, Yu ; Sun, Jinguang ; Meng, Xiangfu ; Jin, Haibo ; Peng, Yanfei ; Zhang, Xinjun</creator><creatorcontrib>Sang, Yu ; Sun, Jinguang ; Meng, Xiangfu ; Jin, Haibo ; Peng, Yanfei ; Zhang, Xinjun</creatorcontrib><description>Random noise attenuation of seismic data is an essential step in the processing of seismic signals. However, as the exploration environment is becoming more and more complicated, the energy of valid signals is weaker and the signal to noise (SNR) is much lower, which brings great difficulty to seismic data processing and interpretation. To this end, we propose an unconventional and effective seismic random noise attenuation method based on proximal classifier with consistency (PCC) in transform domain. Firstly, we analyze various transforms for seismic data from traditional wavelet transform and curvelet transform to emerging non-subsampled shearlet transform (NSST) and non-subsampled contourlet transform (NSCT). And, we select the excellent NSST to decompose the noisy seismic data into different sub-bands of frequency and orientation responses. Secondly, unlike traditional sparse transform based seismic denoising methods that often directly use a thresholding operator and corresponding inverse transform to denoise seismic data, our proposed method employs a superior performance PCC to classify the NSST coefficients of seismic data before thresholding operator. The added step can effectively divide the NSST coefficients into reflected useful signal coefficients and noise-related coefficients, which can preserve the edge of reflected signals and keep the information of events intact as much as possible. In addition, we also introduce an adaptive threshold computing method and a soft-thresholding method to achieve seismic data denoising better. Finally, the experimental results on the typical synthetic example and real seismic data show the superior performance of the proposed method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2959024</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Attenuation ; Coefficients ; Data processing ; Domains ; Laplace equations ; Machine learning ; Noise ; Noise reduction ; non-subsampled shearlet transform (NSST) ; proximal classifier with consistency (PCC) ; Random noise ; Seismic analysis ; Seismic data ; Shearing ; Signal processing ; Signal to noise ratio ; Transformations (mathematics) ; Wavelet transforms</subject><ispartof>IEEE access, 2020, Vol.8, p.30368-30377</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-aacf6d350f2e0e2d2c59696f3ae745c97869294d8f7ef15be253b79d57fb28eb3</citedby><cites>FETCH-LOGICAL-c408t-aacf6d350f2e0e2d2c59696f3ae745c97869294d8f7ef15be253b79d57fb28eb3</cites><orcidid>0000-0001-7322-6623 ; 0000-0001-5936-6697 ; 0000-0002-4596-911X ; 0000-0001-5260-1105 ; 0000-0002-8818-1808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8939375$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Sang, Yu</creatorcontrib><creatorcontrib>Sun, Jinguang</creatorcontrib><creatorcontrib>Meng, Xiangfu</creatorcontrib><creatorcontrib>Jin, Haibo</creatorcontrib><creatorcontrib>Peng, Yanfei</creatorcontrib><creatorcontrib>Zhang, Xinjun</creatorcontrib><title>Seismic Random Noise Attenuation Based on PCC Classification in Transform Domain</title><title>IEEE access</title><addtitle>Access</addtitle><description>Random noise attenuation of seismic data is an essential step in the processing of seismic signals. However, as the exploration environment is becoming more and more complicated, the energy of valid signals is weaker and the signal to noise (SNR) is much lower, which brings great difficulty to seismic data processing and interpretation. To this end, we propose an unconventional and effective seismic random noise attenuation method based on proximal classifier with consistency (PCC) in transform domain. Firstly, we analyze various transforms for seismic data from traditional wavelet transform and curvelet transform to emerging non-subsampled shearlet transform (NSST) and non-subsampled contourlet transform (NSCT). And, we select the excellent NSST to decompose the noisy seismic data into different sub-bands of frequency and orientation responses. Secondly, unlike traditional sparse transform based seismic denoising methods that often directly use a thresholding operator and corresponding inverse transform to denoise seismic data, our proposed method employs a superior performance PCC to classify the NSST coefficients of seismic data before thresholding operator. The added step can effectively divide the NSST coefficients into reflected useful signal coefficients and noise-related coefficients, which can preserve the edge of reflected signals and keep the information of events intact as much as possible. In addition, we also introduce an adaptive threshold computing method and a soft-thresholding method to achieve seismic data denoising better. Finally, the experimental results on the typical synthetic example and real seismic data show the superior performance of the proposed method.</description><subject>Attenuation</subject><subject>Coefficients</subject><subject>Data processing</subject><subject>Domains</subject><subject>Laplace equations</subject><subject>Machine learning</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>non-subsampled shearlet transform (NSST)</subject><subject>proximal classifier with consistency (PCC)</subject><subject>Random noise</subject><subject>Seismic analysis</subject><subject>Seismic data</subject><subject>Shearing</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Transformations (mathematics)</subject><subject>Wavelet transforms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOgXcInEucWPOM4eS3hVQlBROFuOvUaumhjs9MDfYwhC7GVXszszK01RnFOyoJTA5bJtbzabBSMUFgwEEFYdFCeM1jDngteH_-bjYpbSluRqMiTkSbHeoE-9N-WzHmzoy8fgE5bLccRhr0cfhvJKJ7RlHtZtW7Y7nZJ33kw7P5QvUQ_JhdiX16HXfjgrjpzeJZz99tPi9fbmpb2fPzzdrdrlw9xUpBnnWhtXWy6IY0iQWWYE1FA7rlFWwoBsamBQ2cZJdFR0yATvJFghXcca7PhpsZp0bdBb9R59r-OnCtqrHyDEN6Xj6M0OVYONILSrs3FXWWk6EGhIlSXB0hpp1rqYtN5j-NhjGtU27OOQ31esEhUwSYHnKz5dmRhSiuj-XClR30moKQn1nYT6TSKzzieWR8Q_RgMcuBT8C9DPg5I</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Sang, Yu</creator><creator>Sun, Jinguang</creator><creator>Meng, Xiangfu</creator><creator>Jin, Haibo</creator><creator>Peng, Yanfei</creator><creator>Zhang, Xinjun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7322-6623</orcidid><orcidid>https://orcid.org/0000-0001-5936-6697</orcidid><orcidid>https://orcid.org/0000-0002-4596-911X</orcidid><orcidid>https://orcid.org/0000-0001-5260-1105</orcidid><orcidid>https://orcid.org/0000-0002-8818-1808</orcidid></search><sort><creationdate>2020</creationdate><title>Seismic Random Noise Attenuation Based on PCC Classification in Transform Domain</title><author>Sang, Yu ; Sun, Jinguang ; Meng, Xiangfu ; Jin, Haibo ; Peng, Yanfei ; Zhang, Xinjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-aacf6d350f2e0e2d2c59696f3ae745c97869294d8f7ef15be253b79d57fb28eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Attenuation</topic><topic>Coefficients</topic><topic>Data processing</topic><topic>Domains</topic><topic>Laplace equations</topic><topic>Machine learning</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>non-subsampled shearlet transform (NSST)</topic><topic>proximal classifier with consistency (PCC)</topic><topic>Random noise</topic><topic>Seismic analysis</topic><topic>Seismic data</topic><topic>Shearing</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Transformations (mathematics)</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sang, Yu</creatorcontrib><creatorcontrib>Sun, Jinguang</creatorcontrib><creatorcontrib>Meng, Xiangfu</creatorcontrib><creatorcontrib>Jin, Haibo</creatorcontrib><creatorcontrib>Peng, Yanfei</creatorcontrib><creatorcontrib>Zhang, Xinjun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sang, Yu</au><au>Sun, Jinguang</au><au>Meng, Xiangfu</au><au>Jin, Haibo</au><au>Peng, Yanfei</au><au>Zhang, Xinjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seismic Random Noise Attenuation Based on PCC Classification in Transform Domain</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>30368</spage><epage>30377</epage><pages>30368-30377</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Random noise attenuation of seismic data is an essential step in the processing of seismic signals. However, as the exploration environment is becoming more and more complicated, the energy of valid signals is weaker and the signal to noise (SNR) is much lower, which brings great difficulty to seismic data processing and interpretation. To this end, we propose an unconventional and effective seismic random noise attenuation method based on proximal classifier with consistency (PCC) in transform domain. Firstly, we analyze various transforms for seismic data from traditional wavelet transform and curvelet transform to emerging non-subsampled shearlet transform (NSST) and non-subsampled contourlet transform (NSCT). And, we select the excellent NSST to decompose the noisy seismic data into different sub-bands of frequency and orientation responses. Secondly, unlike traditional sparse transform based seismic denoising methods that often directly use a thresholding operator and corresponding inverse transform to denoise seismic data, our proposed method employs a superior performance PCC to classify the NSST coefficients of seismic data before thresholding operator. The added step can effectively divide the NSST coefficients into reflected useful signal coefficients and noise-related coefficients, which can preserve the edge of reflected signals and keep the information of events intact as much as possible. In addition, we also introduce an adaptive threshold computing method and a soft-thresholding method to achieve seismic data denoising better. Finally, the experimental results on the typical synthetic example and real seismic data show the superior performance of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2959024</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7322-6623</orcidid><orcidid>https://orcid.org/0000-0001-5936-6697</orcidid><orcidid>https://orcid.org/0000-0002-4596-911X</orcidid><orcidid>https://orcid.org/0000-0001-5260-1105</orcidid><orcidid>https://orcid.org/0000-0002-8818-1808</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.30368-30377 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8939375 |
source | DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); IEEE Xplore Open Access Journals |
subjects | Attenuation Coefficients Data processing Domains Laplace equations Machine learning Noise Noise reduction non-subsampled shearlet transform (NSST) proximal classifier with consistency (PCC) Random noise Seismic analysis Seismic data Shearing Signal processing Signal to noise ratio Transformations (mathematics) Wavelet transforms |
title | Seismic Random Noise Attenuation Based on PCC Classification in Transform Domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T06%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seismic%20Random%20Noise%20Attenuation%20Based%20on%20PCC%20Classification%20in%20Transform%20Domain&rft.jtitle=IEEE%20access&rft.au=Sang,%20Yu&rft.date=2020&rft.volume=8&rft.spage=30368&rft.epage=30377&rft.pages=30368-30377&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2959024&rft_dat=%3Cproquest_ieee_%3E2454927193%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454927193&rft_id=info:pmid/&rft_ieee_id=8939375&rft_doaj_id=oai_doaj_org_article_8e8501b6408b4d7cb95ec04e259d16e1&rfr_iscdi=true |