Blind Community Detection From Low-Rank Excitations of a Graph Filter

This paper considers a new framework to detect communities in a graph from the observation of signals at its nodes. We model the observed signals as noisy outputs of an unknown network process, represented as a graph filter that is excited by a set of unknown low-rank inputs/excitations. Application...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2020, Vol.68, p.436-451
Hauptverfasser: Wai, Hoi-To, Segarra, Santiago, Ozdaglar, Asuman E., Scaglione, Anna, Jadbabaie, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 451
container_issue
container_start_page 436
container_title IEEE transactions on signal processing
container_volume 68
creator Wai, Hoi-To
Segarra, Santiago
Ozdaglar, Asuman E.
Scaglione, Anna
Jadbabaie, Ali
description This paper considers a new framework to detect communities in a graph from the observation of signals at its nodes. We model the observed signals as noisy outputs of an unknown network process, represented as a graph filter that is excited by a set of unknown low-rank inputs/excitations. Application scenarios of this model include diffusion dynamics, pricing experiments, and opinion dynamics. Rather than learning the precise parameters of the graph itself, we aim at retrieving the community structure directly. The paper shows that communities can be detected by applying a spectral method to the covariance matrix of graph signals. Our analysis indicates that the community detection performance depends on an intrinsic `low-pass' property of the graph filter. We also show that the performance can be improved via a low-rank matrix plus sparse decomposition method when the latent parameter vectors are known. Numerical results demonstrate that our approach is effective.
doi_str_mv 10.1109/TSP.2019.2961296
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8937488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8937488</ieee_id><sourcerecordid>2348109182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-222ed6b3dd02ea2313c1950f0b273a97f92c5c87a48c16d1cbae174c1f4b98d03</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvA89ZMkt0kR61tFQqKVvAWstksbu1uapJS--_d0uJhmIF53ww8hK6BjACIulu8v44oATWiqoC-TtAAFIeMcFGc9jPJWZZL8XmOLmJcEgKcq2KAJg-rpqvw2LftpmvSDj-65GxqfIenwbd47rfZm-m-8eTXNsnsFxH7Ghs8C2b9hafNKrlwic5qs4ru6tiH6GM6WYyfsvnL7Hl8P88sYyxllFJXFSWrKkKdoQyYBZWTmpRUMKNErajNrRSGSwtFBbY0DgS3UPNSyYqwIbo93F0H_7NxMeml34Suf6kp47L3AJL2FDlQNvgYg6v1OjStCTsNRO9l6V6W3svSR1l95OYQaZxz_7hUTHAp2R-bCmRv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348109182</pqid></control><display><type>article</type><title>Blind Community Detection From Low-Rank Excitations of a Graph Filter</title><source>IEEE Electronic Library (IEL)</source><creator>Wai, Hoi-To ; Segarra, Santiago ; Ozdaglar, Asuman E. ; Scaglione, Anna ; Jadbabaie, Ali</creator><creatorcontrib>Wai, Hoi-To ; Segarra, Santiago ; Ozdaglar, Asuman E. ; Scaglione, Anna ; Jadbabaie, Ali</creatorcontrib><description>This paper considers a new framework to detect communities in a graph from the observation of signals at its nodes. We model the observed signals as noisy outputs of an unknown network process, represented as a graph filter that is excited by a set of unknown low-rank inputs/excitations. Application scenarios of this model include diffusion dynamics, pricing experiments, and opinion dynamics. Rather than learning the precise parameters of the graph itself, we aim at retrieving the community structure directly. The paper shows that communities can be detected by applying a spectral method to the covariance matrix of graph signals. Our analysis indicates that the community detection performance depends on an intrinsic `low-pass' property of the graph filter. We also show that the performance can be improved via a low-rank matrix plus sparse decomposition method when the latent parameter vectors are known. Numerical results demonstrate that our approach is effective.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2019.2961296</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Community detection ; Covariance matrices ; Covariance matrix ; Excitation ; graph signal processing ; Graphical representations ; Laplace equations ; low-rank matrix recovery ; Mathematical models ; Matrix decomposition ; Matrix methods ; Parameters ; Pricing ; Signal processing ; spectral clustering ; Spectral methods ; Symmetric matrices ; Topology</subject><ispartof>IEEE transactions on signal processing, 2020, Vol.68, p.436-451</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-222ed6b3dd02ea2313c1950f0b273a97f92c5c87a48c16d1cbae174c1f4b98d03</citedby><cites>FETCH-LOGICAL-c333t-222ed6b3dd02ea2313c1950f0b273a97f92c5c87a48c16d1cbae174c1f4b98d03</cites><orcidid>0000-0002-1827-1285 ; 0000-0002-8408-9633 ; 0000-0003-1122-3069 ; 0000-0003-4796-4483 ; 0000-0002-8892-3680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8937488$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8937488$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wai, Hoi-To</creatorcontrib><creatorcontrib>Segarra, Santiago</creatorcontrib><creatorcontrib>Ozdaglar, Asuman E.</creatorcontrib><creatorcontrib>Scaglione, Anna</creatorcontrib><creatorcontrib>Jadbabaie, Ali</creatorcontrib><title>Blind Community Detection From Low-Rank Excitations of a Graph Filter</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper considers a new framework to detect communities in a graph from the observation of signals at its nodes. We model the observed signals as noisy outputs of an unknown network process, represented as a graph filter that is excited by a set of unknown low-rank inputs/excitations. Application scenarios of this model include diffusion dynamics, pricing experiments, and opinion dynamics. Rather than learning the precise parameters of the graph itself, we aim at retrieving the community structure directly. The paper shows that communities can be detected by applying a spectral method to the covariance matrix of graph signals. Our analysis indicates that the community detection performance depends on an intrinsic `low-pass' property of the graph filter. We also show that the performance can be improved via a low-rank matrix plus sparse decomposition method when the latent parameter vectors are known. Numerical results demonstrate that our approach is effective.</description><subject>Community detection</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Excitation</subject><subject>graph signal processing</subject><subject>Graphical representations</subject><subject>Laplace equations</subject><subject>low-rank matrix recovery</subject><subject>Mathematical models</subject><subject>Matrix decomposition</subject><subject>Matrix methods</subject><subject>Parameters</subject><subject>Pricing</subject><subject>Signal processing</subject><subject>spectral clustering</subject><subject>Spectral methods</subject><subject>Symmetric matrices</subject><subject>Topology</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvA89ZMkt0kR61tFQqKVvAWstksbu1uapJS--_d0uJhmIF53ww8hK6BjACIulu8v44oATWiqoC-TtAAFIeMcFGc9jPJWZZL8XmOLmJcEgKcq2KAJg-rpqvw2LftpmvSDj-65GxqfIenwbd47rfZm-m-8eTXNsnsFxH7Ghs8C2b9hafNKrlwic5qs4ru6tiH6GM6WYyfsvnL7Hl8P88sYyxllFJXFSWrKkKdoQyYBZWTmpRUMKNErajNrRSGSwtFBbY0DgS3UPNSyYqwIbo93F0H_7NxMeml34Suf6kp47L3AJL2FDlQNvgYg6v1OjStCTsNRO9l6V6W3svSR1l95OYQaZxz_7hUTHAp2R-bCmRv</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wai, Hoi-To</creator><creator>Segarra, Santiago</creator><creator>Ozdaglar, Asuman E.</creator><creator>Scaglione, Anna</creator><creator>Jadbabaie, Ali</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1827-1285</orcidid><orcidid>https://orcid.org/0000-0002-8408-9633</orcidid><orcidid>https://orcid.org/0000-0003-1122-3069</orcidid><orcidid>https://orcid.org/0000-0003-4796-4483</orcidid><orcidid>https://orcid.org/0000-0002-8892-3680</orcidid></search><sort><creationdate>2020</creationdate><title>Blind Community Detection From Low-Rank Excitations of a Graph Filter</title><author>Wai, Hoi-To ; Segarra, Santiago ; Ozdaglar, Asuman E. ; Scaglione, Anna ; Jadbabaie, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-222ed6b3dd02ea2313c1950f0b273a97f92c5c87a48c16d1cbae174c1f4b98d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Community detection</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Excitation</topic><topic>graph signal processing</topic><topic>Graphical representations</topic><topic>Laplace equations</topic><topic>low-rank matrix recovery</topic><topic>Mathematical models</topic><topic>Matrix decomposition</topic><topic>Matrix methods</topic><topic>Parameters</topic><topic>Pricing</topic><topic>Signal processing</topic><topic>spectral clustering</topic><topic>Spectral methods</topic><topic>Symmetric matrices</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wai, Hoi-To</creatorcontrib><creatorcontrib>Segarra, Santiago</creatorcontrib><creatorcontrib>Ozdaglar, Asuman E.</creatorcontrib><creatorcontrib>Scaglione, Anna</creatorcontrib><creatorcontrib>Jadbabaie, Ali</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wai, Hoi-To</au><au>Segarra, Santiago</au><au>Ozdaglar, Asuman E.</au><au>Scaglione, Anna</au><au>Jadbabaie, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind Community Detection From Low-Rank Excitations of a Graph Filter</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2020</date><risdate>2020</risdate><volume>68</volume><spage>436</spage><epage>451</epage><pages>436-451</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper considers a new framework to detect communities in a graph from the observation of signals at its nodes. We model the observed signals as noisy outputs of an unknown network process, represented as a graph filter that is excited by a set of unknown low-rank inputs/excitations. Application scenarios of this model include diffusion dynamics, pricing experiments, and opinion dynamics. Rather than learning the precise parameters of the graph itself, we aim at retrieving the community structure directly. The paper shows that communities can be detected by applying a spectral method to the covariance matrix of graph signals. Our analysis indicates that the community detection performance depends on an intrinsic `low-pass' property of the graph filter. We also show that the performance can be improved via a low-rank matrix plus sparse decomposition method when the latent parameter vectors are known. Numerical results demonstrate that our approach is effective.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2019.2961296</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1827-1285</orcidid><orcidid>https://orcid.org/0000-0002-8408-9633</orcidid><orcidid>https://orcid.org/0000-0003-1122-3069</orcidid><orcidid>https://orcid.org/0000-0003-4796-4483</orcidid><orcidid>https://orcid.org/0000-0002-8892-3680</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2020, Vol.68, p.436-451
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_8937488
source IEEE Electronic Library (IEL)
subjects Community detection
Covariance matrices
Covariance matrix
Excitation
graph signal processing
Graphical representations
Laplace equations
low-rank matrix recovery
Mathematical models
Matrix decomposition
Matrix methods
Parameters
Pricing
Signal processing
spectral clustering
Spectral methods
Symmetric matrices
Topology
title Blind Community Detection From Low-Rank Excitations of a Graph Filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20Community%20Detection%20From%20Low-Rank%20Excitations%20of%20a%20Graph%20Filter&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Wai,%20Hoi-To&rft.date=2020&rft.volume=68&rft.spage=436&rft.epage=451&rft.pages=436-451&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2019.2961296&rft_dat=%3Cproquest_RIE%3E2348109182%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348109182&rft_id=info:pmid/&rft_ieee_id=8937488&rfr_iscdi=true