Blind Community Detection From Low-Rank Excitations of a Graph Filter
This paper considers a new framework to detect communities in a graph from the observation of signals at its nodes. We model the observed signals as noisy outputs of an unknown network process, represented as a graph filter that is excited by a set of unknown low-rank inputs/excitations. Application...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2020, Vol.68, p.436-451 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 451 |
---|---|
container_issue | |
container_start_page | 436 |
container_title | IEEE transactions on signal processing |
container_volume | 68 |
creator | Wai, Hoi-To Segarra, Santiago Ozdaglar, Asuman E. Scaglione, Anna Jadbabaie, Ali |
description | This paper considers a new framework to detect communities in a graph from the observation of signals at its nodes. We model the observed signals as noisy outputs of an unknown network process, represented as a graph filter that is excited by a set of unknown low-rank inputs/excitations. Application scenarios of this model include diffusion dynamics, pricing experiments, and opinion dynamics. Rather than learning the precise parameters of the graph itself, we aim at retrieving the community structure directly. The paper shows that communities can be detected by applying a spectral method to the covariance matrix of graph signals. Our analysis indicates that the community detection performance depends on an intrinsic `low-pass' property of the graph filter. We also show that the performance can be improved via a low-rank matrix plus sparse decomposition method when the latent parameter vectors are known. Numerical results demonstrate that our approach is effective. |
doi_str_mv | 10.1109/TSP.2019.2961296 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8937488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8937488</ieee_id><sourcerecordid>2348109182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-222ed6b3dd02ea2313c1950f0b273a97f92c5c87a48c16d1cbae174c1f4b98d03</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvA89ZMkt0kR61tFQqKVvAWstksbu1uapJS--_d0uJhmIF53ww8hK6BjACIulu8v44oATWiqoC-TtAAFIeMcFGc9jPJWZZL8XmOLmJcEgKcq2KAJg-rpqvw2LftpmvSDj-65GxqfIenwbd47rfZm-m-8eTXNsnsFxH7Ghs8C2b9hafNKrlwic5qs4ru6tiH6GM6WYyfsvnL7Hl8P88sYyxllFJXFSWrKkKdoQyYBZWTmpRUMKNErajNrRSGSwtFBbY0DgS3UPNSyYqwIbo93F0H_7NxMeml34Suf6kp47L3AJL2FDlQNvgYg6v1OjStCTsNRO9l6V6W3svSR1l95OYQaZxz_7hUTHAp2R-bCmRv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348109182</pqid></control><display><type>article</type><title>Blind Community Detection From Low-Rank Excitations of a Graph Filter</title><source>IEEE Electronic Library (IEL)</source><creator>Wai, Hoi-To ; Segarra, Santiago ; Ozdaglar, Asuman E. ; Scaglione, Anna ; Jadbabaie, Ali</creator><creatorcontrib>Wai, Hoi-To ; Segarra, Santiago ; Ozdaglar, Asuman E. ; Scaglione, Anna ; Jadbabaie, Ali</creatorcontrib><description>This paper considers a new framework to detect communities in a graph from the observation of signals at its nodes. We model the observed signals as noisy outputs of an unknown network process, represented as a graph filter that is excited by a set of unknown low-rank inputs/excitations. Application scenarios of this model include diffusion dynamics, pricing experiments, and opinion dynamics. Rather than learning the precise parameters of the graph itself, we aim at retrieving the community structure directly. The paper shows that communities can be detected by applying a spectral method to the covariance matrix of graph signals. Our analysis indicates that the community detection performance depends on an intrinsic `low-pass' property of the graph filter. We also show that the performance can be improved via a low-rank matrix plus sparse decomposition method when the latent parameter vectors are known. Numerical results demonstrate that our approach is effective.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2019.2961296</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Community detection ; Covariance matrices ; Covariance matrix ; Excitation ; graph signal processing ; Graphical representations ; Laplace equations ; low-rank matrix recovery ; Mathematical models ; Matrix decomposition ; Matrix methods ; Parameters ; Pricing ; Signal processing ; spectral clustering ; Spectral methods ; Symmetric matrices ; Topology</subject><ispartof>IEEE transactions on signal processing, 2020, Vol.68, p.436-451</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-222ed6b3dd02ea2313c1950f0b273a97f92c5c87a48c16d1cbae174c1f4b98d03</citedby><cites>FETCH-LOGICAL-c333t-222ed6b3dd02ea2313c1950f0b273a97f92c5c87a48c16d1cbae174c1f4b98d03</cites><orcidid>0000-0002-1827-1285 ; 0000-0002-8408-9633 ; 0000-0003-1122-3069 ; 0000-0003-4796-4483 ; 0000-0002-8892-3680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8937488$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8937488$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wai, Hoi-To</creatorcontrib><creatorcontrib>Segarra, Santiago</creatorcontrib><creatorcontrib>Ozdaglar, Asuman E.</creatorcontrib><creatorcontrib>Scaglione, Anna</creatorcontrib><creatorcontrib>Jadbabaie, Ali</creatorcontrib><title>Blind Community Detection From Low-Rank Excitations of a Graph Filter</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper considers a new framework to detect communities in a graph from the observation of signals at its nodes. We model the observed signals as noisy outputs of an unknown network process, represented as a graph filter that is excited by a set of unknown low-rank inputs/excitations. Application scenarios of this model include diffusion dynamics, pricing experiments, and opinion dynamics. Rather than learning the precise parameters of the graph itself, we aim at retrieving the community structure directly. The paper shows that communities can be detected by applying a spectral method to the covariance matrix of graph signals. Our analysis indicates that the community detection performance depends on an intrinsic `low-pass' property of the graph filter. We also show that the performance can be improved via a low-rank matrix plus sparse decomposition method when the latent parameter vectors are known. Numerical results demonstrate that our approach is effective.</description><subject>Community detection</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Excitation</subject><subject>graph signal processing</subject><subject>Graphical representations</subject><subject>Laplace equations</subject><subject>low-rank matrix recovery</subject><subject>Mathematical models</subject><subject>Matrix decomposition</subject><subject>Matrix methods</subject><subject>Parameters</subject><subject>Pricing</subject><subject>Signal processing</subject><subject>spectral clustering</subject><subject>Spectral methods</subject><subject>Symmetric matrices</subject><subject>Topology</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvA89ZMkt0kR61tFQqKVvAWstksbu1uapJS--_d0uJhmIF53ww8hK6BjACIulu8v44oATWiqoC-TtAAFIeMcFGc9jPJWZZL8XmOLmJcEgKcq2KAJg-rpqvw2LftpmvSDj-65GxqfIenwbd47rfZm-m-8eTXNsnsFxH7Ghs8C2b9hafNKrlwic5qs4ru6tiH6GM6WYyfsvnL7Hl8P88sYyxllFJXFSWrKkKdoQyYBZWTmpRUMKNErajNrRSGSwtFBbY0DgS3UPNSyYqwIbo93F0H_7NxMeml34Suf6kp47L3AJL2FDlQNvgYg6v1OjStCTsNRO9l6V6W3svSR1l95OYQaZxz_7hUTHAp2R-bCmRv</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wai, Hoi-To</creator><creator>Segarra, Santiago</creator><creator>Ozdaglar, Asuman E.</creator><creator>Scaglione, Anna</creator><creator>Jadbabaie, Ali</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1827-1285</orcidid><orcidid>https://orcid.org/0000-0002-8408-9633</orcidid><orcidid>https://orcid.org/0000-0003-1122-3069</orcidid><orcidid>https://orcid.org/0000-0003-4796-4483</orcidid><orcidid>https://orcid.org/0000-0002-8892-3680</orcidid></search><sort><creationdate>2020</creationdate><title>Blind Community Detection From Low-Rank Excitations of a Graph Filter</title><author>Wai, Hoi-To ; Segarra, Santiago ; Ozdaglar, Asuman E. ; Scaglione, Anna ; Jadbabaie, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-222ed6b3dd02ea2313c1950f0b273a97f92c5c87a48c16d1cbae174c1f4b98d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Community detection</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Excitation</topic><topic>graph signal processing</topic><topic>Graphical representations</topic><topic>Laplace equations</topic><topic>low-rank matrix recovery</topic><topic>Mathematical models</topic><topic>Matrix decomposition</topic><topic>Matrix methods</topic><topic>Parameters</topic><topic>Pricing</topic><topic>Signal processing</topic><topic>spectral clustering</topic><topic>Spectral methods</topic><topic>Symmetric matrices</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wai, Hoi-To</creatorcontrib><creatorcontrib>Segarra, Santiago</creatorcontrib><creatorcontrib>Ozdaglar, Asuman E.</creatorcontrib><creatorcontrib>Scaglione, Anna</creatorcontrib><creatorcontrib>Jadbabaie, Ali</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wai, Hoi-To</au><au>Segarra, Santiago</au><au>Ozdaglar, Asuman E.</au><au>Scaglione, Anna</au><au>Jadbabaie, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind Community Detection From Low-Rank Excitations of a Graph Filter</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2020</date><risdate>2020</risdate><volume>68</volume><spage>436</spage><epage>451</epage><pages>436-451</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper considers a new framework to detect communities in a graph from the observation of signals at its nodes. We model the observed signals as noisy outputs of an unknown network process, represented as a graph filter that is excited by a set of unknown low-rank inputs/excitations. Application scenarios of this model include diffusion dynamics, pricing experiments, and opinion dynamics. Rather than learning the precise parameters of the graph itself, we aim at retrieving the community structure directly. The paper shows that communities can be detected by applying a spectral method to the covariance matrix of graph signals. Our analysis indicates that the community detection performance depends on an intrinsic `low-pass' property of the graph filter. We also show that the performance can be improved via a low-rank matrix plus sparse decomposition method when the latent parameter vectors are known. Numerical results demonstrate that our approach is effective.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2019.2961296</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1827-1285</orcidid><orcidid>https://orcid.org/0000-0002-8408-9633</orcidid><orcidid>https://orcid.org/0000-0003-1122-3069</orcidid><orcidid>https://orcid.org/0000-0003-4796-4483</orcidid><orcidid>https://orcid.org/0000-0002-8892-3680</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2020, Vol.68, p.436-451 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_8937488 |
source | IEEE Electronic Library (IEL) |
subjects | Community detection Covariance matrices Covariance matrix Excitation graph signal processing Graphical representations Laplace equations low-rank matrix recovery Mathematical models Matrix decomposition Matrix methods Parameters Pricing Signal processing spectral clustering Spectral methods Symmetric matrices Topology |
title | Blind Community Detection From Low-Rank Excitations of a Graph Filter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20Community%20Detection%20From%20Low-Rank%20Excitations%20of%20a%20Graph%20Filter&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Wai,%20Hoi-To&rft.date=2020&rft.volume=68&rft.spage=436&rft.epage=451&rft.pages=436-451&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2019.2961296&rft_dat=%3Cproquest_RIE%3E2348109182%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348109182&rft_id=info:pmid/&rft_ieee_id=8937488&rfr_iscdi=true |