Lattice Thermal Conductivity in Nanowires: Coupling the Bechmann-Kirchhoff Boundary Scattering Model With a Monte Carlo Framework

In this article, the effect of rough surface on phonon transport has been studied for silicon nanowire structures. The diffusive boundary scattering has been treated using the Beckmann-Kirchhoff (B-K) surface roughness scattering (SRS) model, considering the effect of roughness height, correlation l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2020-04, Vol.10 (4), p.590-598
Hauptverfasser: Rashid, Mohammad Zunaidur, Ahmed, Shaikh Shahid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 598
container_issue 4
container_start_page 590
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume 10
creator Rashid, Mohammad Zunaidur
Ahmed, Shaikh Shahid
description In this article, the effect of rough surface on phonon transport has been studied for silicon nanowire structures. The diffusive boundary scattering has been treated using the Beckmann-Kirchhoff (B-K) surface roughness scattering (SRS) model, considering the effect of roughness height, correlation length, phonon wavelength, and incident/reflected angles. The model is more comprehensive and accurate than the conventional approaches, where surface roughness is usually modeled based on experimental fitting parameters or only phonon wavelength. The B-K SRS model has been integrated within a particle-based Monte Carlo phonon transport (MCPT) simulator to study the thermal conductivity of different nanowire structures. The simulator is benchmarked against the experimental data for both bulk and nanowire devices. The reduction of thermal conductivity in nanowires as a function of the degree of roughness has been discussed. It is found that for a 70-nm-width, 6- \mu \text{m} -long silicon structure, using 2.3-nm roughness height and 8.9-nm correlation length, 89% reduction in thermal conductivity occurs at 300 K. The sensitivity of the developed simulator with varying degree of roughness and the effect of SRS on different phonon spectral branches have been studied. These observations can be useful in designing materials with low thermal conductivity for thermoelectric cooling applications.
doi_str_mv 10.1109/TCPMT.2019.2960355
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8935365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8935365</ieee_id><sourcerecordid>2386053693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-15f0bc984892348ed93ef33996f53c91c81d51c8b38b5d77368bebe09b13df813</originalsourceid><addsrcrecordid>eNo9UMtOwzAQjBBIIOgPwMUS5xQ7i1ObG0QUEOUhUcQxcpwNMaR2cRwQR_4cl6LuYR_amVntJMkho2PGqDyZF49383FGmRxnMqfA-VaylzGepyAF3970nO4mo75_ozG4oBMKe8nPTIVgNJJ5i36hOlI4Ww86mE8Tvomx5F5Z92U89mdxNSw7Y19JaJFcoG4Xytr01njdtq5pyIUbbK38N3nSURT9CnrnauzIiwktUXGwAUmhfOfI1KsFfjn_fpDsNKrrcfRf95Pn6eW8uE5nD1c3xfks1ZmkIWW8oZWW4lTIDE4F1hKwAZAybzhoybRgNY-5AlHxejKBXFRYIZUVg7oRDPaT47Xu0ruPAftQvrnB23iyzEDklEMuIaKyNUp71_cem3LpzSI-VTJartwu_9wuV26X_25H0tGaZBBxQxASoiaHX4W2fGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386053693</pqid></control><display><type>article</type><title>Lattice Thermal Conductivity in Nanowires: Coupling the Bechmann-Kirchhoff Boundary Scattering Model With a Monte Carlo Framework</title><source>IEEE Xplore</source><creator>Rashid, Mohammad Zunaidur ; Ahmed, Shaikh Shahid</creator><creatorcontrib>Rashid, Mohammad Zunaidur ; Ahmed, Shaikh Shahid</creatorcontrib><description>In this article, the effect of rough surface on phonon transport has been studied for silicon nanowire structures. The diffusive boundary scattering has been treated using the Beckmann-Kirchhoff (B-K) surface roughness scattering (SRS) model, considering the effect of roughness height, correlation length, phonon wavelength, and incident/reflected angles. The model is more comprehensive and accurate than the conventional approaches, where surface roughness is usually modeled based on experimental fitting parameters or only phonon wavelength. The B-K SRS model has been integrated within a particle-based Monte Carlo phonon transport (MCPT) simulator to study the thermal conductivity of different nanowire structures. The simulator is benchmarked against the experimental data for both bulk and nanowire devices. The reduction of thermal conductivity in nanowires as a function of the degree of roughness has been discussed. It is found that for a 70-nm-width, 6-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu \text{m} &lt;/tex-math&gt;&lt;/inline-formula&gt;-long silicon structure, using 2.3-nm roughness height and 8.9-nm correlation length, 89% reduction in thermal conductivity occurs at 300 K. The sensitivity of the developed simulator with varying degree of roughness and the effect of SRS on different phonon spectral branches have been studied. These observations can be useful in designing materials with low thermal conductivity for thermoelectric cooling applications.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2019.2960355</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Angle of reflection ; Beckmann–Kirchhoff (B-K) model ; Computational modeling ; Computer simulation ; Conductivity ; Heat conductivity ; Heat transfer ; Mathematical model ; Nanowires ; phonon diffusive scattering ; phonon Monte Carlo (MC) simulation ; Phonons ; Reduction ; Rough surfaces ; Scattering ; Silicon ; Surface roughness ; temperature dependence of phonon scattering ; Thermal conductivity ; thermal conductivity reduction ; Thermoelectric cooling ; Transport</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2020-04, Vol.10 (4), p.590-598</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c290t-15f0bc984892348ed93ef33996f53c91c81d51c8b38b5d77368bebe09b13df813</cites><orcidid>0000-0001-5030-617X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8935365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8935365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rashid, Mohammad Zunaidur</creatorcontrib><creatorcontrib>Ahmed, Shaikh Shahid</creatorcontrib><title>Lattice Thermal Conductivity in Nanowires: Coupling the Bechmann-Kirchhoff Boundary Scattering Model With a Monte Carlo Framework</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>In this article, the effect of rough surface on phonon transport has been studied for silicon nanowire structures. The diffusive boundary scattering has been treated using the Beckmann-Kirchhoff (B-K) surface roughness scattering (SRS) model, considering the effect of roughness height, correlation length, phonon wavelength, and incident/reflected angles. The model is more comprehensive and accurate than the conventional approaches, where surface roughness is usually modeled based on experimental fitting parameters or only phonon wavelength. The B-K SRS model has been integrated within a particle-based Monte Carlo phonon transport (MCPT) simulator to study the thermal conductivity of different nanowire structures. The simulator is benchmarked against the experimental data for both bulk and nanowire devices. The reduction of thermal conductivity in nanowires as a function of the degree of roughness has been discussed. It is found that for a 70-nm-width, 6-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu \text{m} &lt;/tex-math&gt;&lt;/inline-formula&gt;-long silicon structure, using 2.3-nm roughness height and 8.9-nm correlation length, 89% reduction in thermal conductivity occurs at 300 K. The sensitivity of the developed simulator with varying degree of roughness and the effect of SRS on different phonon spectral branches have been studied. These observations can be useful in designing materials with low thermal conductivity for thermoelectric cooling applications.</description><subject>Angle of reflection</subject><subject>Beckmann–Kirchhoff (B-K) model</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Conductivity</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Mathematical model</subject><subject>Nanowires</subject><subject>phonon diffusive scattering</subject><subject>phonon Monte Carlo (MC) simulation</subject><subject>Phonons</subject><subject>Reduction</subject><subject>Rough surfaces</subject><subject>Scattering</subject><subject>Silicon</subject><subject>Surface roughness</subject><subject>temperature dependence of phonon scattering</subject><subject>Thermal conductivity</subject><subject>thermal conductivity reduction</subject><subject>Thermoelectric cooling</subject><subject>Transport</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQjBBIIOgPwMUS5xQ7i1ObG0QUEOUhUcQxcpwNMaR2cRwQR_4cl6LuYR_amVntJMkho2PGqDyZF49383FGmRxnMqfA-VaylzGepyAF3970nO4mo75_ozG4oBMKe8nPTIVgNJJ5i36hOlI4Ww86mE8Tvomx5F5Z92U89mdxNSw7Y19JaJFcoG4Xytr01njdtq5pyIUbbK38N3nSURT9CnrnauzIiwktUXGwAUmhfOfI1KsFfjn_fpDsNKrrcfRf95Pn6eW8uE5nD1c3xfks1ZmkIWW8oZWW4lTIDE4F1hKwAZAybzhoybRgNY-5AlHxejKBXFRYIZUVg7oRDPaT47Xu0ruPAftQvrnB23iyzEDklEMuIaKyNUp71_cem3LpzSI-VTJartwu_9wuV26X_25H0tGaZBBxQxASoiaHX4W2fGg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Rashid, Mohammad Zunaidur</creator><creator>Ahmed, Shaikh Shahid</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5030-617X</orcidid></search><sort><creationdate>20200401</creationdate><title>Lattice Thermal Conductivity in Nanowires: Coupling the Bechmann-Kirchhoff Boundary Scattering Model With a Monte Carlo Framework</title><author>Rashid, Mohammad Zunaidur ; Ahmed, Shaikh Shahid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-15f0bc984892348ed93ef33996f53c91c81d51c8b38b5d77368bebe09b13df813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angle of reflection</topic><topic>Beckmann–Kirchhoff (B-K) model</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Conductivity</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Mathematical model</topic><topic>Nanowires</topic><topic>phonon diffusive scattering</topic><topic>phonon Monte Carlo (MC) simulation</topic><topic>Phonons</topic><topic>Reduction</topic><topic>Rough surfaces</topic><topic>Scattering</topic><topic>Silicon</topic><topic>Surface roughness</topic><topic>temperature dependence of phonon scattering</topic><topic>Thermal conductivity</topic><topic>thermal conductivity reduction</topic><topic>Thermoelectric cooling</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rashid, Mohammad Zunaidur</creatorcontrib><creatorcontrib>Ahmed, Shaikh Shahid</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rashid, Mohammad Zunaidur</au><au>Ahmed, Shaikh Shahid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Thermal Conductivity in Nanowires: Coupling the Bechmann-Kirchhoff Boundary Scattering Model With a Monte Carlo Framework</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>10</volume><issue>4</issue><spage>590</spage><epage>598</epage><pages>590-598</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>In this article, the effect of rough surface on phonon transport has been studied for silicon nanowire structures. The diffusive boundary scattering has been treated using the Beckmann-Kirchhoff (B-K) surface roughness scattering (SRS) model, considering the effect of roughness height, correlation length, phonon wavelength, and incident/reflected angles. The model is more comprehensive and accurate than the conventional approaches, where surface roughness is usually modeled based on experimental fitting parameters or only phonon wavelength. The B-K SRS model has been integrated within a particle-based Monte Carlo phonon transport (MCPT) simulator to study the thermal conductivity of different nanowire structures. The simulator is benchmarked against the experimental data for both bulk and nanowire devices. The reduction of thermal conductivity in nanowires as a function of the degree of roughness has been discussed. It is found that for a 70-nm-width, 6-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu \text{m} &lt;/tex-math&gt;&lt;/inline-formula&gt;-long silicon structure, using 2.3-nm roughness height and 8.9-nm correlation length, 89% reduction in thermal conductivity occurs at 300 K. The sensitivity of the developed simulator with varying degree of roughness and the effect of SRS on different phonon spectral branches have been studied. These observations can be useful in designing materials with low thermal conductivity for thermoelectric cooling applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2019.2960355</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5030-617X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2020-04, Vol.10 (4), p.590-598
issn 2156-3950
2156-3985
language eng
recordid cdi_ieee_primary_8935365
source IEEE Xplore
subjects Angle of reflection
Beckmann–Kirchhoff (B-K) model
Computational modeling
Computer simulation
Conductivity
Heat conductivity
Heat transfer
Mathematical model
Nanowires
phonon diffusive scattering
phonon Monte Carlo (MC) simulation
Phonons
Reduction
Rough surfaces
Scattering
Silicon
Surface roughness
temperature dependence of phonon scattering
Thermal conductivity
thermal conductivity reduction
Thermoelectric cooling
Transport
title Lattice Thermal Conductivity in Nanowires: Coupling the Bechmann-Kirchhoff Boundary Scattering Model With a Monte Carlo Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A38%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Thermal%20Conductivity%20in%20Nanowires:%20Coupling%20the%20Bechmann-Kirchhoff%20Boundary%20Scattering%20Model%20With%20a%20Monte%20Carlo%20Framework&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Rashid,%20Mohammad%20Zunaidur&rft.date=2020-04-01&rft.volume=10&rft.issue=4&rft.spage=590&rft.epage=598&rft.pages=590-598&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2019.2960355&rft_dat=%3Cproquest_RIE%3E2386053693%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386053693&rft_id=info:pmid/&rft_ieee_id=8935365&rfr_iscdi=true