Lattice Thermal Conductivity in Nanowires: Coupling the Bechmann-Kirchhoff Boundary Scattering Model With a Monte Carlo Framework
In this article, the effect of rough surface on phonon transport has been studied for silicon nanowire structures. The diffusive boundary scattering has been treated using the Beckmann-Kirchhoff (B-K) surface roughness scattering (SRS) model, considering the effect of roughness height, correlation l...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2020-04, Vol.10 (4), p.590-598 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 598 |
---|---|
container_issue | 4 |
container_start_page | 590 |
container_title | IEEE transactions on components, packaging, and manufacturing technology (2011) |
container_volume | 10 |
creator | Rashid, Mohammad Zunaidur Ahmed, Shaikh Shahid |
description | In this article, the effect of rough surface on phonon transport has been studied for silicon nanowire structures. The diffusive boundary scattering has been treated using the Beckmann-Kirchhoff (B-K) surface roughness scattering (SRS) model, considering the effect of roughness height, correlation length, phonon wavelength, and incident/reflected angles. The model is more comprehensive and accurate than the conventional approaches, where surface roughness is usually modeled based on experimental fitting parameters or only phonon wavelength. The B-K SRS model has been integrated within a particle-based Monte Carlo phonon transport (MCPT) simulator to study the thermal conductivity of different nanowire structures. The simulator is benchmarked against the experimental data for both bulk and nanowire devices. The reduction of thermal conductivity in nanowires as a function of the degree of roughness has been discussed. It is found that for a 70-nm-width, 6- \mu \text{m} -long silicon structure, using 2.3-nm roughness height and 8.9-nm correlation length, 89% reduction in thermal conductivity occurs at 300 K. The sensitivity of the developed simulator with varying degree of roughness and the effect of SRS on different phonon spectral branches have been studied. These observations can be useful in designing materials with low thermal conductivity for thermoelectric cooling applications. |
doi_str_mv | 10.1109/TCPMT.2019.2960355 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8935365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8935365</ieee_id><sourcerecordid>2386053693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-15f0bc984892348ed93ef33996f53c91c81d51c8b38b5d77368bebe09b13df813</originalsourceid><addsrcrecordid>eNo9UMtOwzAQjBBIIOgPwMUS5xQ7i1ObG0QUEOUhUcQxcpwNMaR2cRwQR_4cl6LuYR_amVntJMkho2PGqDyZF49383FGmRxnMqfA-VaylzGepyAF3970nO4mo75_ozG4oBMKe8nPTIVgNJJ5i36hOlI4Ww86mE8Tvomx5F5Z92U89mdxNSw7Y19JaJFcoG4Xytr01njdtq5pyIUbbK38N3nSURT9CnrnauzIiwktUXGwAUmhfOfI1KsFfjn_fpDsNKrrcfRf95Pn6eW8uE5nD1c3xfks1ZmkIWW8oZWW4lTIDE4F1hKwAZAybzhoybRgNY-5AlHxejKBXFRYIZUVg7oRDPaT47Xu0ruPAftQvrnB23iyzEDklEMuIaKyNUp71_cem3LpzSI-VTJartwu_9wuV26X_25H0tGaZBBxQxASoiaHX4W2fGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386053693</pqid></control><display><type>article</type><title>Lattice Thermal Conductivity in Nanowires: Coupling the Bechmann-Kirchhoff Boundary Scattering Model With a Monte Carlo Framework</title><source>IEEE Xplore</source><creator>Rashid, Mohammad Zunaidur ; Ahmed, Shaikh Shahid</creator><creatorcontrib>Rashid, Mohammad Zunaidur ; Ahmed, Shaikh Shahid</creatorcontrib><description>In this article, the effect of rough surface on phonon transport has been studied for silicon nanowire structures. The diffusive boundary scattering has been treated using the Beckmann-Kirchhoff (B-K) surface roughness scattering (SRS) model, considering the effect of roughness height, correlation length, phonon wavelength, and incident/reflected angles. The model is more comprehensive and accurate than the conventional approaches, where surface roughness is usually modeled based on experimental fitting parameters or only phonon wavelength. The B-K SRS model has been integrated within a particle-based Monte Carlo phonon transport (MCPT) simulator to study the thermal conductivity of different nanowire structures. The simulator is benchmarked against the experimental data for both bulk and nanowire devices. The reduction of thermal conductivity in nanowires as a function of the degree of roughness has been discussed. It is found that for a 70-nm-width, 6-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>-long silicon structure, using 2.3-nm roughness height and 8.9-nm correlation length, 89% reduction in thermal conductivity occurs at 300 K. The sensitivity of the developed simulator with varying degree of roughness and the effect of SRS on different phonon spectral branches have been studied. These observations can be useful in designing materials with low thermal conductivity for thermoelectric cooling applications.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2019.2960355</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Angle of reflection ; Beckmann–Kirchhoff (B-K) model ; Computational modeling ; Computer simulation ; Conductivity ; Heat conductivity ; Heat transfer ; Mathematical model ; Nanowires ; phonon diffusive scattering ; phonon Monte Carlo (MC) simulation ; Phonons ; Reduction ; Rough surfaces ; Scattering ; Silicon ; Surface roughness ; temperature dependence of phonon scattering ; Thermal conductivity ; thermal conductivity reduction ; Thermoelectric cooling ; Transport</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2020-04, Vol.10 (4), p.590-598</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c290t-15f0bc984892348ed93ef33996f53c91c81d51c8b38b5d77368bebe09b13df813</cites><orcidid>0000-0001-5030-617X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8935365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8935365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rashid, Mohammad Zunaidur</creatorcontrib><creatorcontrib>Ahmed, Shaikh Shahid</creatorcontrib><title>Lattice Thermal Conductivity in Nanowires: Coupling the Bechmann-Kirchhoff Boundary Scattering Model With a Monte Carlo Framework</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>In this article, the effect of rough surface on phonon transport has been studied for silicon nanowire structures. The diffusive boundary scattering has been treated using the Beckmann-Kirchhoff (B-K) surface roughness scattering (SRS) model, considering the effect of roughness height, correlation length, phonon wavelength, and incident/reflected angles. The model is more comprehensive and accurate than the conventional approaches, where surface roughness is usually modeled based on experimental fitting parameters or only phonon wavelength. The B-K SRS model has been integrated within a particle-based Monte Carlo phonon transport (MCPT) simulator to study the thermal conductivity of different nanowire structures. The simulator is benchmarked against the experimental data for both bulk and nanowire devices. The reduction of thermal conductivity in nanowires as a function of the degree of roughness has been discussed. It is found that for a 70-nm-width, 6-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>-long silicon structure, using 2.3-nm roughness height and 8.9-nm correlation length, 89% reduction in thermal conductivity occurs at 300 K. The sensitivity of the developed simulator with varying degree of roughness and the effect of SRS on different phonon spectral branches have been studied. These observations can be useful in designing materials with low thermal conductivity for thermoelectric cooling applications.</description><subject>Angle of reflection</subject><subject>Beckmann–Kirchhoff (B-K) model</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Conductivity</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Mathematical model</subject><subject>Nanowires</subject><subject>phonon diffusive scattering</subject><subject>phonon Monte Carlo (MC) simulation</subject><subject>Phonons</subject><subject>Reduction</subject><subject>Rough surfaces</subject><subject>Scattering</subject><subject>Silicon</subject><subject>Surface roughness</subject><subject>temperature dependence of phonon scattering</subject><subject>Thermal conductivity</subject><subject>thermal conductivity reduction</subject><subject>Thermoelectric cooling</subject><subject>Transport</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQjBBIIOgPwMUS5xQ7i1ObG0QUEOUhUcQxcpwNMaR2cRwQR_4cl6LuYR_amVntJMkho2PGqDyZF49383FGmRxnMqfA-VaylzGepyAF3970nO4mo75_ozG4oBMKe8nPTIVgNJJ5i36hOlI4Ww86mE8Tvomx5F5Z92U89mdxNSw7Y19JaJFcoG4Xytr01njdtq5pyIUbbK38N3nSURT9CnrnauzIiwktUXGwAUmhfOfI1KsFfjn_fpDsNKrrcfRf95Pn6eW8uE5nD1c3xfks1ZmkIWW8oZWW4lTIDE4F1hKwAZAybzhoybRgNY-5AlHxejKBXFRYIZUVg7oRDPaT47Xu0ruPAftQvrnB23iyzEDklEMuIaKyNUp71_cem3LpzSI-VTJartwu_9wuV26X_25H0tGaZBBxQxASoiaHX4W2fGg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Rashid, Mohammad Zunaidur</creator><creator>Ahmed, Shaikh Shahid</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5030-617X</orcidid></search><sort><creationdate>20200401</creationdate><title>Lattice Thermal Conductivity in Nanowires: Coupling the Bechmann-Kirchhoff Boundary Scattering Model With a Monte Carlo Framework</title><author>Rashid, Mohammad Zunaidur ; Ahmed, Shaikh Shahid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-15f0bc984892348ed93ef33996f53c91c81d51c8b38b5d77368bebe09b13df813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angle of reflection</topic><topic>Beckmann–Kirchhoff (B-K) model</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Conductivity</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Mathematical model</topic><topic>Nanowires</topic><topic>phonon diffusive scattering</topic><topic>phonon Monte Carlo (MC) simulation</topic><topic>Phonons</topic><topic>Reduction</topic><topic>Rough surfaces</topic><topic>Scattering</topic><topic>Silicon</topic><topic>Surface roughness</topic><topic>temperature dependence of phonon scattering</topic><topic>Thermal conductivity</topic><topic>thermal conductivity reduction</topic><topic>Thermoelectric cooling</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rashid, Mohammad Zunaidur</creatorcontrib><creatorcontrib>Ahmed, Shaikh Shahid</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rashid, Mohammad Zunaidur</au><au>Ahmed, Shaikh Shahid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Thermal Conductivity in Nanowires: Coupling the Bechmann-Kirchhoff Boundary Scattering Model With a Monte Carlo Framework</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>10</volume><issue>4</issue><spage>590</spage><epage>598</epage><pages>590-598</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>In this article, the effect of rough surface on phonon transport has been studied for silicon nanowire structures. The diffusive boundary scattering has been treated using the Beckmann-Kirchhoff (B-K) surface roughness scattering (SRS) model, considering the effect of roughness height, correlation length, phonon wavelength, and incident/reflected angles. The model is more comprehensive and accurate than the conventional approaches, where surface roughness is usually modeled based on experimental fitting parameters or only phonon wavelength. The B-K SRS model has been integrated within a particle-based Monte Carlo phonon transport (MCPT) simulator to study the thermal conductivity of different nanowire structures. The simulator is benchmarked against the experimental data for both bulk and nanowire devices. The reduction of thermal conductivity in nanowires as a function of the degree of roughness has been discussed. It is found that for a 70-nm-width, 6-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>-long silicon structure, using 2.3-nm roughness height and 8.9-nm correlation length, 89% reduction in thermal conductivity occurs at 300 K. The sensitivity of the developed simulator with varying degree of roughness and the effect of SRS on different phonon spectral branches have been studied. These observations can be useful in designing materials with low thermal conductivity for thermoelectric cooling applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2019.2960355</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5030-617X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3950 |
ispartof | IEEE transactions on components, packaging, and manufacturing technology (2011), 2020-04, Vol.10 (4), p.590-598 |
issn | 2156-3950 2156-3985 |
language | eng |
recordid | cdi_ieee_primary_8935365 |
source | IEEE Xplore |
subjects | Angle of reflection Beckmann–Kirchhoff (B-K) model Computational modeling Computer simulation Conductivity Heat conductivity Heat transfer Mathematical model Nanowires phonon diffusive scattering phonon Monte Carlo (MC) simulation Phonons Reduction Rough surfaces Scattering Silicon Surface roughness temperature dependence of phonon scattering Thermal conductivity thermal conductivity reduction Thermoelectric cooling Transport |
title | Lattice Thermal Conductivity in Nanowires: Coupling the Bechmann-Kirchhoff Boundary Scattering Model With a Monte Carlo Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A38%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Thermal%20Conductivity%20in%20Nanowires:%20Coupling%20the%20Bechmann-Kirchhoff%20Boundary%20Scattering%20Model%20With%20a%20Monte%20Carlo%20Framework&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Rashid,%20Mohammad%20Zunaidur&rft.date=2020-04-01&rft.volume=10&rft.issue=4&rft.spage=590&rft.epage=598&rft.pages=590-598&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2019.2960355&rft_dat=%3Cproquest_RIE%3E2386053693%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386053693&rft_id=info:pmid/&rft_ieee_id=8935365&rfr_iscdi=true |