Distributed Self-Healing Scheme for Unbalanced Electrical Distribution Systems Based on Alternating Direction Method of Multipliers

With the advent of Smart Grids and advanced communication technologies, the self-healing scheme has become a desirable function of the operation and planning of electrical distribution systems (EDSs). In the presence of a permanent fault, an optimized self-healing scheme minimizes the unsupplied dem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2020-05, Vol.35 (3), p.2190-2199
Hauptverfasser: Shen, Feifan, Lopez, Juan Camilo, Wu, Qiuwei, Rider, Marcos J., Lu, Tianguang, Hatziargyriou, Nikos D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2199
container_issue 3
container_start_page 2190
container_title IEEE transactions on power systems
container_volume 35
creator Shen, Feifan
Lopez, Juan Camilo
Wu, Qiuwei
Rider, Marcos J.
Lu, Tianguang
Hatziargyriou, Nikos D.
description With the advent of Smart Grids and advanced communication technologies, the self-healing scheme has become a desirable function of the operation and planning of electrical distribution systems (EDSs). In the presence of a permanent fault, an optimized self-healing scheme minimizes the unsupplied demand while maintaining the faulted section of the network isolated. The service restoration of the self-healing scheme is a combinatorial optimization problem whose computational complexity grows exponentially with the number of binary variables. To resolve this issue, a distributed optimal service restoration strategy is developed based on the alternating direction method of multipliers (ADMM). The service restoration problem is formulated as a mixed-integer second-order cone programming (MISOCP) problem. The decision variables of the problem are the status of the remote-controlled switches, load zones and load shedding at each controllable demand. Operational constraints, such as current and voltage magnitude constraints, distributed generation (DG) capacity constraints and radial topology constraints, are respected in the optimization problem. Through the ADMM, the optimization problem is distributed among the zones of the EDS, without requiring a central controller. Two test systems, an unbalanced 44-node system and the IEEE 123-node system, were used to conduct case studies. Results show that the proposed method can provide optimal service restoration solutions in reasonable time without a central controller.
doi_str_mv 10.1109/TPWRS.2019.2958090
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8928954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8928954</ieee_id><sourcerecordid>2392109390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-69751b66d9302844463071ad4cd7c4955a25ffca2f0f8b2678236b27bfd282553</originalsourceid><addsrcrecordid>eNo9kEFPwjAYQBujiYj-Ab0s8Tzs2nVrjwgoJhCNg3hcuq6VkrJh2x04-8fthHBq8n3vfWkeAPcJHCUJZE-rj6_PYoRgwkaIEQoZvACDhBAawyxnl2AAKSUxZQRegxvnthDCLCwG4Heqnbe66ryso0IaFc8lN7r5jgqxkTsZqdZG66bihjciIDMjReAFN9HZ1G0TFQfn5c5Fz9wFKgzGxkvbcN-fmmobrB5bSr9pw15Fy854vTdaWncLrhQ3Tt6d3iFYv8xWk3m8eH99m4wXscCY-ThjOUmqLKsZhoimaZphmCe8TkWdi5QRwhFRSnCkoKIVynKKcFahvFI1oogQPASPx7t72_500vly23bhj8aVCDMUOmIGA4WOlLCtc1aqcm_1jttDmcCyj13-xy772OUpdpAejpKWUp4FylBInuI_Ffd8xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392109390</pqid></control><display><type>article</type><title>Distributed Self-Healing Scheme for Unbalanced Electrical Distribution Systems Based on Alternating Direction Method of Multipliers</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Feifan ; Lopez, Juan Camilo ; Wu, Qiuwei ; Rider, Marcos J. ; Lu, Tianguang ; Hatziargyriou, Nikos D.</creator><creatorcontrib>Shen, Feifan ; Lopez, Juan Camilo ; Wu, Qiuwei ; Rider, Marcos J. ; Lu, Tianguang ; Hatziargyriou, Nikos D.</creatorcontrib><description>With the advent of Smart Grids and advanced communication technologies, the self-healing scheme has become a desirable function of the operation and planning of electrical distribution systems (EDSs). In the presence of a permanent fault, an optimized self-healing scheme minimizes the unsupplied demand while maintaining the faulted section of the network isolated. The service restoration of the self-healing scheme is a combinatorial optimization problem whose computational complexity grows exponentially with the number of binary variables. To resolve this issue, a distributed optimal service restoration strategy is developed based on the alternating direction method of multipliers (ADMM). The service restoration problem is formulated as a mixed-integer second-order cone programming (MISOCP) problem. The decision variables of the problem are the status of the remote-controlled switches, load zones and load shedding at each controllable demand. Operational constraints, such as current and voltage magnitude constraints, distributed generation (DG) capacity constraints and radial topology constraints, are respected in the optimization problem. Through the ADMM, the optimization problem is distributed among the zones of the EDS, without requiring a central controller. Two test systems, an unbalanced 44-node system and the IEEE 123-node system, were used to conduct case studies. Results show that the proposed method can provide optimal service restoration solutions in reasonable time without a central controller.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2019.2958090</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alternating direction method of multipliers ; Combinatorial analysis ; Communications technology ; Controllers ; Convex functions ; Distributed generation ; distributed self-healing scheme ; electrical distribution systems ; Electrical loads ; Load shedding ; Multipliers ; Optimization ; Programming ; Reactive power ; Restoration strategies ; Service restoration ; Smart grid ; Stability ; Switches ; Topology ; Unbalance</subject><ispartof>IEEE transactions on power systems, 2020-05, Vol.35 (3), p.2190-2199</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-69751b66d9302844463071ad4cd7c4955a25ffca2f0f8b2678236b27bfd282553</citedby><cites>FETCH-LOGICAL-c339t-69751b66d9302844463071ad4cd7c4955a25ffca2f0f8b2678236b27bfd282553</cites><orcidid>0000-0001-5646-8612 ; 0000-0001-7935-2567 ; 0000-0001-5296-191X ; 0000-0001-5810-7263 ; 0000-0001-5484-1161 ; 0000-0002-6413-3166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8928954$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8928954$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Feifan</creatorcontrib><creatorcontrib>Lopez, Juan Camilo</creatorcontrib><creatorcontrib>Wu, Qiuwei</creatorcontrib><creatorcontrib>Rider, Marcos J.</creatorcontrib><creatorcontrib>Lu, Tianguang</creatorcontrib><creatorcontrib>Hatziargyriou, Nikos D.</creatorcontrib><title>Distributed Self-Healing Scheme for Unbalanced Electrical Distribution Systems Based on Alternating Direction Method of Multipliers</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>With the advent of Smart Grids and advanced communication technologies, the self-healing scheme has become a desirable function of the operation and planning of electrical distribution systems (EDSs). In the presence of a permanent fault, an optimized self-healing scheme minimizes the unsupplied demand while maintaining the faulted section of the network isolated. The service restoration of the self-healing scheme is a combinatorial optimization problem whose computational complexity grows exponentially with the number of binary variables. To resolve this issue, a distributed optimal service restoration strategy is developed based on the alternating direction method of multipliers (ADMM). The service restoration problem is formulated as a mixed-integer second-order cone programming (MISOCP) problem. The decision variables of the problem are the status of the remote-controlled switches, load zones and load shedding at each controllable demand. Operational constraints, such as current and voltage magnitude constraints, distributed generation (DG) capacity constraints and radial topology constraints, are respected in the optimization problem. Through the ADMM, the optimization problem is distributed among the zones of the EDS, without requiring a central controller. Two test systems, an unbalanced 44-node system and the IEEE 123-node system, were used to conduct case studies. Results show that the proposed method can provide optimal service restoration solutions in reasonable time without a central controller.</description><subject>Alternating direction method of multipliers</subject><subject>Combinatorial analysis</subject><subject>Communications technology</subject><subject>Controllers</subject><subject>Convex functions</subject><subject>Distributed generation</subject><subject>distributed self-healing scheme</subject><subject>electrical distribution systems</subject><subject>Electrical loads</subject><subject>Load shedding</subject><subject>Multipliers</subject><subject>Optimization</subject><subject>Programming</subject><subject>Reactive power</subject><subject>Restoration strategies</subject><subject>Service restoration</subject><subject>Smart grid</subject><subject>Stability</subject><subject>Switches</subject><subject>Topology</subject><subject>Unbalance</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwjAYQBujiYj-Ab0s8Tzs2nVrjwgoJhCNg3hcuq6VkrJh2x04-8fthHBq8n3vfWkeAPcJHCUJZE-rj6_PYoRgwkaIEQoZvACDhBAawyxnl2AAKSUxZQRegxvnthDCLCwG4Heqnbe66ryso0IaFc8lN7r5jgqxkTsZqdZG66bihjciIDMjReAFN9HZ1G0TFQfn5c5Fz9wFKgzGxkvbcN-fmmobrB5bSr9pw15Fy854vTdaWncLrhQ3Tt6d3iFYv8xWk3m8eH99m4wXscCY-ThjOUmqLKsZhoimaZphmCe8TkWdi5QRwhFRSnCkoKIVynKKcFahvFI1oogQPASPx7t72_500vly23bhj8aVCDMUOmIGA4WOlLCtc1aqcm_1jttDmcCyj13-xy772OUpdpAejpKWUp4FylBInuI_Ffd8xg</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Shen, Feifan</creator><creator>Lopez, Juan Camilo</creator><creator>Wu, Qiuwei</creator><creator>Rider, Marcos J.</creator><creator>Lu, Tianguang</creator><creator>Hatziargyriou, Nikos D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5646-8612</orcidid><orcidid>https://orcid.org/0000-0001-7935-2567</orcidid><orcidid>https://orcid.org/0000-0001-5296-191X</orcidid><orcidid>https://orcid.org/0000-0001-5810-7263</orcidid><orcidid>https://orcid.org/0000-0001-5484-1161</orcidid><orcidid>https://orcid.org/0000-0002-6413-3166</orcidid></search><sort><creationdate>202005</creationdate><title>Distributed Self-Healing Scheme for Unbalanced Electrical Distribution Systems Based on Alternating Direction Method of Multipliers</title><author>Shen, Feifan ; Lopez, Juan Camilo ; Wu, Qiuwei ; Rider, Marcos J. ; Lu, Tianguang ; Hatziargyriou, Nikos D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-69751b66d9302844463071ad4cd7c4955a25ffca2f0f8b2678236b27bfd282553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternating direction method of multipliers</topic><topic>Combinatorial analysis</topic><topic>Communications technology</topic><topic>Controllers</topic><topic>Convex functions</topic><topic>Distributed generation</topic><topic>distributed self-healing scheme</topic><topic>electrical distribution systems</topic><topic>Electrical loads</topic><topic>Load shedding</topic><topic>Multipliers</topic><topic>Optimization</topic><topic>Programming</topic><topic>Reactive power</topic><topic>Restoration strategies</topic><topic>Service restoration</topic><topic>Smart grid</topic><topic>Stability</topic><topic>Switches</topic><topic>Topology</topic><topic>Unbalance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Feifan</creatorcontrib><creatorcontrib>Lopez, Juan Camilo</creatorcontrib><creatorcontrib>Wu, Qiuwei</creatorcontrib><creatorcontrib>Rider, Marcos J.</creatorcontrib><creatorcontrib>Lu, Tianguang</creatorcontrib><creatorcontrib>Hatziargyriou, Nikos D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Feifan</au><au>Lopez, Juan Camilo</au><au>Wu, Qiuwei</au><au>Rider, Marcos J.</au><au>Lu, Tianguang</au><au>Hatziargyriou, Nikos D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Self-Healing Scheme for Unbalanced Electrical Distribution Systems Based on Alternating Direction Method of Multipliers</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2020-05</date><risdate>2020</risdate><volume>35</volume><issue>3</issue><spage>2190</spage><epage>2199</epage><pages>2190-2199</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>With the advent of Smart Grids and advanced communication technologies, the self-healing scheme has become a desirable function of the operation and planning of electrical distribution systems (EDSs). In the presence of a permanent fault, an optimized self-healing scheme minimizes the unsupplied demand while maintaining the faulted section of the network isolated. The service restoration of the self-healing scheme is a combinatorial optimization problem whose computational complexity grows exponentially with the number of binary variables. To resolve this issue, a distributed optimal service restoration strategy is developed based on the alternating direction method of multipliers (ADMM). The service restoration problem is formulated as a mixed-integer second-order cone programming (MISOCP) problem. The decision variables of the problem are the status of the remote-controlled switches, load zones and load shedding at each controllable demand. Operational constraints, such as current and voltage magnitude constraints, distributed generation (DG) capacity constraints and radial topology constraints, are respected in the optimization problem. Through the ADMM, the optimization problem is distributed among the zones of the EDS, without requiring a central controller. Two test systems, an unbalanced 44-node system and the IEEE 123-node system, were used to conduct case studies. Results show that the proposed method can provide optimal service restoration solutions in reasonable time without a central controller.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2019.2958090</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5646-8612</orcidid><orcidid>https://orcid.org/0000-0001-7935-2567</orcidid><orcidid>https://orcid.org/0000-0001-5296-191X</orcidid><orcidid>https://orcid.org/0000-0001-5810-7263</orcidid><orcidid>https://orcid.org/0000-0001-5484-1161</orcidid><orcidid>https://orcid.org/0000-0002-6413-3166</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2020-05, Vol.35 (3), p.2190-2199
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_8928954
source IEEE Electronic Library (IEL)
subjects Alternating direction method of multipliers
Combinatorial analysis
Communications technology
Controllers
Convex functions
Distributed generation
distributed self-healing scheme
electrical distribution systems
Electrical loads
Load shedding
Multipliers
Optimization
Programming
Reactive power
Restoration strategies
Service restoration
Smart grid
Stability
Switches
Topology
Unbalance
title Distributed Self-Healing Scheme for Unbalanced Electrical Distribution Systems Based on Alternating Direction Method of Multipliers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Self-Healing%20Scheme%20for%20Unbalanced%20Electrical%20Distribution%20Systems%20Based%20on%20Alternating%20Direction%20Method%20of%20Multipliers&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Shen,%20Feifan&rft.date=2020-05&rft.volume=35&rft.issue=3&rft.spage=2190&rft.epage=2199&rft.pages=2190-2199&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2019.2958090&rft_dat=%3Cproquest_RIE%3E2392109390%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392109390&rft_id=info:pmid/&rft_ieee_id=8928954&rfr_iscdi=true