Distributed Self-Healing Scheme for Unbalanced Electrical Distribution Systems Based on Alternating Direction Method of Multipliers
With the advent of Smart Grids and advanced communication technologies, the self-healing scheme has become a desirable function of the operation and planning of electrical distribution systems (EDSs). In the presence of a permanent fault, an optimized self-healing scheme minimizes the unsupplied dem...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2020-05, Vol.35 (3), p.2190-2199 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2199 |
---|---|
container_issue | 3 |
container_start_page | 2190 |
container_title | IEEE transactions on power systems |
container_volume | 35 |
creator | Shen, Feifan Lopez, Juan Camilo Wu, Qiuwei Rider, Marcos J. Lu, Tianguang Hatziargyriou, Nikos D. |
description | With the advent of Smart Grids and advanced communication technologies, the self-healing scheme has become a desirable function of the operation and planning of electrical distribution systems (EDSs). In the presence of a permanent fault, an optimized self-healing scheme minimizes the unsupplied demand while maintaining the faulted section of the network isolated. The service restoration of the self-healing scheme is a combinatorial optimization problem whose computational complexity grows exponentially with the number of binary variables. To resolve this issue, a distributed optimal service restoration strategy is developed based on the alternating direction method of multipliers (ADMM). The service restoration problem is formulated as a mixed-integer second-order cone programming (MISOCP) problem. The decision variables of the problem are the status of the remote-controlled switches, load zones and load shedding at each controllable demand. Operational constraints, such as current and voltage magnitude constraints, distributed generation (DG) capacity constraints and radial topology constraints, are respected in the optimization problem. Through the ADMM, the optimization problem is distributed among the zones of the EDS, without requiring a central controller. Two test systems, an unbalanced 44-node system and the IEEE 123-node system, were used to conduct case studies. Results show that the proposed method can provide optimal service restoration solutions in reasonable time without a central controller. |
doi_str_mv | 10.1109/TPWRS.2019.2958090 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8928954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8928954</ieee_id><sourcerecordid>2392109390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-69751b66d9302844463071ad4cd7c4955a25ffca2f0f8b2678236b27bfd282553</originalsourceid><addsrcrecordid>eNo9kEFPwjAYQBujiYj-Ab0s8Tzs2nVrjwgoJhCNg3hcuq6VkrJh2x04-8fthHBq8n3vfWkeAPcJHCUJZE-rj6_PYoRgwkaIEQoZvACDhBAawyxnl2AAKSUxZQRegxvnthDCLCwG4Heqnbe66ryso0IaFc8lN7r5jgqxkTsZqdZG66bihjciIDMjReAFN9HZ1G0TFQfn5c5Fz9wFKgzGxkvbcN-fmmobrB5bSr9pw15Fy854vTdaWncLrhQ3Tt6d3iFYv8xWk3m8eH99m4wXscCY-ThjOUmqLKsZhoimaZphmCe8TkWdi5QRwhFRSnCkoKIVynKKcFahvFI1oogQPASPx7t72_500vly23bhj8aVCDMUOmIGA4WOlLCtc1aqcm_1jttDmcCyj13-xy772OUpdpAejpKWUp4FylBInuI_Ffd8xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392109390</pqid></control><display><type>article</type><title>Distributed Self-Healing Scheme for Unbalanced Electrical Distribution Systems Based on Alternating Direction Method of Multipliers</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Feifan ; Lopez, Juan Camilo ; Wu, Qiuwei ; Rider, Marcos J. ; Lu, Tianguang ; Hatziargyriou, Nikos D.</creator><creatorcontrib>Shen, Feifan ; Lopez, Juan Camilo ; Wu, Qiuwei ; Rider, Marcos J. ; Lu, Tianguang ; Hatziargyriou, Nikos D.</creatorcontrib><description>With the advent of Smart Grids and advanced communication technologies, the self-healing scheme has become a desirable function of the operation and planning of electrical distribution systems (EDSs). In the presence of a permanent fault, an optimized self-healing scheme minimizes the unsupplied demand while maintaining the faulted section of the network isolated. The service restoration of the self-healing scheme is a combinatorial optimization problem whose computational complexity grows exponentially with the number of binary variables. To resolve this issue, a distributed optimal service restoration strategy is developed based on the alternating direction method of multipliers (ADMM). The service restoration problem is formulated as a mixed-integer second-order cone programming (MISOCP) problem. The decision variables of the problem are the status of the remote-controlled switches, load zones and load shedding at each controllable demand. Operational constraints, such as current and voltage magnitude constraints, distributed generation (DG) capacity constraints and radial topology constraints, are respected in the optimization problem. Through the ADMM, the optimization problem is distributed among the zones of the EDS, without requiring a central controller. Two test systems, an unbalanced 44-node system and the IEEE 123-node system, were used to conduct case studies. Results show that the proposed method can provide optimal service restoration solutions in reasonable time without a central controller.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2019.2958090</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alternating direction method of multipliers ; Combinatorial analysis ; Communications technology ; Controllers ; Convex functions ; Distributed generation ; distributed self-healing scheme ; electrical distribution systems ; Electrical loads ; Load shedding ; Multipliers ; Optimization ; Programming ; Reactive power ; Restoration strategies ; Service restoration ; Smart grid ; Stability ; Switches ; Topology ; Unbalance</subject><ispartof>IEEE transactions on power systems, 2020-05, Vol.35 (3), p.2190-2199</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-69751b66d9302844463071ad4cd7c4955a25ffca2f0f8b2678236b27bfd282553</citedby><cites>FETCH-LOGICAL-c339t-69751b66d9302844463071ad4cd7c4955a25ffca2f0f8b2678236b27bfd282553</cites><orcidid>0000-0001-5646-8612 ; 0000-0001-7935-2567 ; 0000-0001-5296-191X ; 0000-0001-5810-7263 ; 0000-0001-5484-1161 ; 0000-0002-6413-3166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8928954$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8928954$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Feifan</creatorcontrib><creatorcontrib>Lopez, Juan Camilo</creatorcontrib><creatorcontrib>Wu, Qiuwei</creatorcontrib><creatorcontrib>Rider, Marcos J.</creatorcontrib><creatorcontrib>Lu, Tianguang</creatorcontrib><creatorcontrib>Hatziargyriou, Nikos D.</creatorcontrib><title>Distributed Self-Healing Scheme for Unbalanced Electrical Distribution Systems Based on Alternating Direction Method of Multipliers</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>With the advent of Smart Grids and advanced communication technologies, the self-healing scheme has become a desirable function of the operation and planning of electrical distribution systems (EDSs). In the presence of a permanent fault, an optimized self-healing scheme minimizes the unsupplied demand while maintaining the faulted section of the network isolated. The service restoration of the self-healing scheme is a combinatorial optimization problem whose computational complexity grows exponentially with the number of binary variables. To resolve this issue, a distributed optimal service restoration strategy is developed based on the alternating direction method of multipliers (ADMM). The service restoration problem is formulated as a mixed-integer second-order cone programming (MISOCP) problem. The decision variables of the problem are the status of the remote-controlled switches, load zones and load shedding at each controllable demand. Operational constraints, such as current and voltage magnitude constraints, distributed generation (DG) capacity constraints and radial topology constraints, are respected in the optimization problem. Through the ADMM, the optimization problem is distributed among the zones of the EDS, without requiring a central controller. Two test systems, an unbalanced 44-node system and the IEEE 123-node system, were used to conduct case studies. Results show that the proposed method can provide optimal service restoration solutions in reasonable time without a central controller.</description><subject>Alternating direction method of multipliers</subject><subject>Combinatorial analysis</subject><subject>Communications technology</subject><subject>Controllers</subject><subject>Convex functions</subject><subject>Distributed generation</subject><subject>distributed self-healing scheme</subject><subject>electrical distribution systems</subject><subject>Electrical loads</subject><subject>Load shedding</subject><subject>Multipliers</subject><subject>Optimization</subject><subject>Programming</subject><subject>Reactive power</subject><subject>Restoration strategies</subject><subject>Service restoration</subject><subject>Smart grid</subject><subject>Stability</subject><subject>Switches</subject><subject>Topology</subject><subject>Unbalance</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwjAYQBujiYj-Ab0s8Tzs2nVrjwgoJhCNg3hcuq6VkrJh2x04-8fthHBq8n3vfWkeAPcJHCUJZE-rj6_PYoRgwkaIEQoZvACDhBAawyxnl2AAKSUxZQRegxvnthDCLCwG4Heqnbe66ryso0IaFc8lN7r5jgqxkTsZqdZG66bihjciIDMjReAFN9HZ1G0TFQfn5c5Fz9wFKgzGxkvbcN-fmmobrB5bSr9pw15Fy854vTdaWncLrhQ3Tt6d3iFYv8xWk3m8eH99m4wXscCY-ThjOUmqLKsZhoimaZphmCe8TkWdi5QRwhFRSnCkoKIVynKKcFahvFI1oogQPASPx7t72_500vly23bhj8aVCDMUOmIGA4WOlLCtc1aqcm_1jttDmcCyj13-xy772OUpdpAejpKWUp4FylBInuI_Ffd8xg</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Shen, Feifan</creator><creator>Lopez, Juan Camilo</creator><creator>Wu, Qiuwei</creator><creator>Rider, Marcos J.</creator><creator>Lu, Tianguang</creator><creator>Hatziargyriou, Nikos D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5646-8612</orcidid><orcidid>https://orcid.org/0000-0001-7935-2567</orcidid><orcidid>https://orcid.org/0000-0001-5296-191X</orcidid><orcidid>https://orcid.org/0000-0001-5810-7263</orcidid><orcidid>https://orcid.org/0000-0001-5484-1161</orcidid><orcidid>https://orcid.org/0000-0002-6413-3166</orcidid></search><sort><creationdate>202005</creationdate><title>Distributed Self-Healing Scheme for Unbalanced Electrical Distribution Systems Based on Alternating Direction Method of Multipliers</title><author>Shen, Feifan ; Lopez, Juan Camilo ; Wu, Qiuwei ; Rider, Marcos J. ; Lu, Tianguang ; Hatziargyriou, Nikos D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-69751b66d9302844463071ad4cd7c4955a25ffca2f0f8b2678236b27bfd282553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternating direction method of multipliers</topic><topic>Combinatorial analysis</topic><topic>Communications technology</topic><topic>Controllers</topic><topic>Convex functions</topic><topic>Distributed generation</topic><topic>distributed self-healing scheme</topic><topic>electrical distribution systems</topic><topic>Electrical loads</topic><topic>Load shedding</topic><topic>Multipliers</topic><topic>Optimization</topic><topic>Programming</topic><topic>Reactive power</topic><topic>Restoration strategies</topic><topic>Service restoration</topic><topic>Smart grid</topic><topic>Stability</topic><topic>Switches</topic><topic>Topology</topic><topic>Unbalance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Feifan</creatorcontrib><creatorcontrib>Lopez, Juan Camilo</creatorcontrib><creatorcontrib>Wu, Qiuwei</creatorcontrib><creatorcontrib>Rider, Marcos J.</creatorcontrib><creatorcontrib>Lu, Tianguang</creatorcontrib><creatorcontrib>Hatziargyriou, Nikos D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Feifan</au><au>Lopez, Juan Camilo</au><au>Wu, Qiuwei</au><au>Rider, Marcos J.</au><au>Lu, Tianguang</au><au>Hatziargyriou, Nikos D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Self-Healing Scheme for Unbalanced Electrical Distribution Systems Based on Alternating Direction Method of Multipliers</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2020-05</date><risdate>2020</risdate><volume>35</volume><issue>3</issue><spage>2190</spage><epage>2199</epage><pages>2190-2199</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>With the advent of Smart Grids and advanced communication technologies, the self-healing scheme has become a desirable function of the operation and planning of electrical distribution systems (EDSs). In the presence of a permanent fault, an optimized self-healing scheme minimizes the unsupplied demand while maintaining the faulted section of the network isolated. The service restoration of the self-healing scheme is a combinatorial optimization problem whose computational complexity grows exponentially with the number of binary variables. To resolve this issue, a distributed optimal service restoration strategy is developed based on the alternating direction method of multipliers (ADMM). The service restoration problem is formulated as a mixed-integer second-order cone programming (MISOCP) problem. The decision variables of the problem are the status of the remote-controlled switches, load zones and load shedding at each controllable demand. Operational constraints, such as current and voltage magnitude constraints, distributed generation (DG) capacity constraints and radial topology constraints, are respected in the optimization problem. Through the ADMM, the optimization problem is distributed among the zones of the EDS, without requiring a central controller. Two test systems, an unbalanced 44-node system and the IEEE 123-node system, were used to conduct case studies. Results show that the proposed method can provide optimal service restoration solutions in reasonable time without a central controller.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2019.2958090</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5646-8612</orcidid><orcidid>https://orcid.org/0000-0001-7935-2567</orcidid><orcidid>https://orcid.org/0000-0001-5296-191X</orcidid><orcidid>https://orcid.org/0000-0001-5810-7263</orcidid><orcidid>https://orcid.org/0000-0001-5484-1161</orcidid><orcidid>https://orcid.org/0000-0002-6413-3166</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2020-05, Vol.35 (3), p.2190-2199 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_ieee_primary_8928954 |
source | IEEE Electronic Library (IEL) |
subjects | Alternating direction method of multipliers Combinatorial analysis Communications technology Controllers Convex functions Distributed generation distributed self-healing scheme electrical distribution systems Electrical loads Load shedding Multipliers Optimization Programming Reactive power Restoration strategies Service restoration Smart grid Stability Switches Topology Unbalance |
title | Distributed Self-Healing Scheme for Unbalanced Electrical Distribution Systems Based on Alternating Direction Method of Multipliers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Self-Healing%20Scheme%20for%20Unbalanced%20Electrical%20Distribution%20Systems%20Based%20on%20Alternating%20Direction%20Method%20of%20Multipliers&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Shen,%20Feifan&rft.date=2020-05&rft.volume=35&rft.issue=3&rft.spage=2190&rft.epage=2199&rft.pages=2190-2199&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2019.2958090&rft_dat=%3Cproquest_RIE%3E2392109390%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392109390&rft_id=info:pmid/&rft_ieee_id=8928954&rfr_iscdi=true |