Inclusion of Radiation Environment Variability for Reliability Estimates for SiC Power MOSFETs
Variability of the solar energetic particle environment is investigated for single-event burnout (SEB) reliability of silicon carbide power metal-oxide-semiconductor field-effect transistors. A probabilistic assessment of failure evaluates the benefits of derating voltage, shielding, and mission len...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2020-01, Vol.67 (1), p.353-357 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 357 |
---|---|
container_issue | 1 |
container_start_page | 353 |
container_title | IEEE transactions on nuclear science |
container_volume | 67 |
creator | Austin, Rebekah A. Sierawski, Brian D. Reed, Robert A. Schrimpf, Ronald D. Galloway, Kenneth F. Ball, Dennis R. Witulski, Arthur F. |
description | Variability of the solar energetic particle environment is investigated for single-event burnout (SEB) reliability of silicon carbide power metal-oxide-semiconductor field-effect transistors. A probabilistic assessment of failure evaluates the benefits of derating voltage, shielding, and mission length. The Prediction of Solar particle Yields for Characterizing Integrating Circuits code is used to calculate a cumulative density function for the fluence of the environment. The lethal ion method is then used to determine what proportion of the environment will cause SEB. The operating voltage determines the lowest linear energy transfer (LET) particle that will cause SEB, and that should be included in the environment distribution. The shielding and mission length also determines the final environment distribution of the mission fluence. When the critical LET for a device is relatively low for the expected mission environment, the method in this article can calculate the probability of failure from a destructive event. The calculated probability of failure enables the consideration of part use outside the safe operating area, especially when derating the operating voltage would eliminate the technology advantage of the part. |
doi_str_mv | 10.1109/TNS.2019.2957979 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8926391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8926391</ieee_id><sourcerecordid>2349116187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-5dc4d363c3e122a7f5678a93423a63d3fed27ebb2ca5249404893344751729f03</originalsourceid><addsrcrecordid>eNo9UE1LAzEQDaJgrd4FPSx43prPzc5RStVCtdJWj4Z0NwspbbYmqdJ_b-pKT8Ob9zHDQ-ia4AEhGO4Xr_MBxQQGFIQECSeoR4QocyJkeYp6GJMyBw5wji5CWCXIBRY99Dl21XoXbOuytslmurY6HsDIfVvfuo1xMfvQ3uqlXdu4z5rWZzOzPuJRiHajowl_zNwOs7f2x_jsZTp_HC3CJTpr9DqYq__ZR-9pPXzOJ9On8fBhkleM0JiLuuI1K1jFDKFUy0YUstTAOGW6YDVrTE2lWS5ppQXlwDEvgTHOpSCSQoNZH911uVvffu1MiGrV7rxLJxVlHAgpSCmTCneqyrcheNOorU_f-70iWB1aVKlFdWhR_beYLLedxemglYs-BWKKBcZYgkj0TUdbY8wxrQRaMCDsF3DHdVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349116187</pqid></control><display><type>article</type><title>Inclusion of Radiation Environment Variability for Reliability Estimates for SiC Power MOSFETs</title><source>IEEE Electronic Library (IEL)</source><creator>Austin, Rebekah A. ; Sierawski, Brian D. ; Reed, Robert A. ; Schrimpf, Ronald D. ; Galloway, Kenneth F. ; Ball, Dennis R. ; Witulski, Arthur F.</creator><creatorcontrib>Austin, Rebekah A. ; Sierawski, Brian D. ; Reed, Robert A. ; Schrimpf, Ronald D. ; Galloway, Kenneth F. ; Ball, Dennis R. ; Witulski, Arthur F.</creatorcontrib><description>Variability of the solar energetic particle environment is investigated for single-event burnout (SEB) reliability of silicon carbide power metal-oxide-semiconductor field-effect transistors. A probabilistic assessment of failure evaluates the benefits of derating voltage, shielding, and mission length. The Prediction of Solar particle Yields for Characterizing Integrating Circuits code is used to calculate a cumulative density function for the fluence of the environment. The lethal ion method is then used to determine what proportion of the environment will cause SEB. The operating voltage determines the lowest linear energy transfer (LET) particle that will cause SEB, and that should be included in the environment distribution. The shielding and mission length also determines the final environment distribution of the mission fluence. When the critical LET for a device is relatively low for the expected mission environment, the method in this article can calculate the probability of failure from a destructive event. The calculated probability of failure enables the consideration of part use outside the safe operating area, especially when derating the operating voltage would eliminate the technology advantage of the part.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2019.2957979</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>Goddard Space Flight Center: IEEE</publisher><subject>Burnout ; Electric potential ; Energetic particles ; Energy transfer ; Environments ; Field effect transistors ; Fluence ; Heavy-ion ; Ions ; Linear energy transfer (LET) ; Mathematical analysis ; MOSFET ; MOSFETs ; Nuclear Physics ; power MOSFETs ; probabilistic risk assessment ; Probability ; Radiation ; radiation hardness assurance (RHA) methodology ; Reliability ; Reliability analysis ; reliability estimation ; Semiconductor devices ; Silicon ; Silicon carbide ; Solar power ; Solar radiation shielding ; Statistical analysis ; Threshold voltage ; Voltage</subject><ispartof>IEEE transactions on nuclear science, 2020-01, Vol.67 (1), p.353-357</ispartof><rights>Copyright Determination: GOV_PERMITTED</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-5dc4d363c3e122a7f5678a93423a63d3fed27ebb2ca5249404893344751729f03</citedby><cites>FETCH-LOGICAL-c312t-5dc4d363c3e122a7f5678a93423a63d3fed27ebb2ca5249404893344751729f03</cites><orcidid>0000-0002-0441-5444 ; 0000-0001-9444-6692 ; 0000-0003-0411-1835 ; 0000-0001-9303-9980 ; 0000-0001-7419-2701 ; 0000-0003-2580-8703 ; 0000-0003-0787-6841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8926391$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,796,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8926391$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Austin, Rebekah A.</creatorcontrib><creatorcontrib>Sierawski, Brian D.</creatorcontrib><creatorcontrib>Reed, Robert A.</creatorcontrib><creatorcontrib>Schrimpf, Ronald D.</creatorcontrib><creatorcontrib>Galloway, Kenneth F.</creatorcontrib><creatorcontrib>Ball, Dennis R.</creatorcontrib><creatorcontrib>Witulski, Arthur F.</creatorcontrib><title>Inclusion of Radiation Environment Variability for Reliability Estimates for SiC Power MOSFETs</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Variability of the solar energetic particle environment is investigated for single-event burnout (SEB) reliability of silicon carbide power metal-oxide-semiconductor field-effect transistors. A probabilistic assessment of failure evaluates the benefits of derating voltage, shielding, and mission length. The Prediction of Solar particle Yields for Characterizing Integrating Circuits code is used to calculate a cumulative density function for the fluence of the environment. The lethal ion method is then used to determine what proportion of the environment will cause SEB. The operating voltage determines the lowest linear energy transfer (LET) particle that will cause SEB, and that should be included in the environment distribution. The shielding and mission length also determines the final environment distribution of the mission fluence. When the critical LET for a device is relatively low for the expected mission environment, the method in this article can calculate the probability of failure from a destructive event. The calculated probability of failure enables the consideration of part use outside the safe operating area, especially when derating the operating voltage would eliminate the technology advantage of the part.</description><subject>Burnout</subject><subject>Electric potential</subject><subject>Energetic particles</subject><subject>Energy transfer</subject><subject>Environments</subject><subject>Field effect transistors</subject><subject>Fluence</subject><subject>Heavy-ion</subject><subject>Ions</subject><subject>Linear energy transfer (LET)</subject><subject>Mathematical analysis</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>Nuclear Physics</subject><subject>power MOSFETs</subject><subject>probabilistic risk assessment</subject><subject>Probability</subject><subject>Radiation</subject><subject>radiation hardness assurance (RHA) methodology</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>reliability estimation</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>Solar power</subject><subject>Solar radiation shielding</subject><subject>Statistical analysis</subject><subject>Threshold voltage</subject><subject>Voltage</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>CYI</sourceid><recordid>eNo9UE1LAzEQDaJgrd4FPSx43prPzc5RStVCtdJWj4Z0NwspbbYmqdJ_b-pKT8Ob9zHDQ-ia4AEhGO4Xr_MBxQQGFIQECSeoR4QocyJkeYp6GJMyBw5wji5CWCXIBRY99Dl21XoXbOuytslmurY6HsDIfVvfuo1xMfvQ3uqlXdu4z5rWZzOzPuJRiHajowl_zNwOs7f2x_jsZTp_HC3CJTpr9DqYq__ZR-9pPXzOJ9On8fBhkleM0JiLuuI1K1jFDKFUy0YUstTAOGW6YDVrTE2lWS5ppQXlwDEvgTHOpSCSQoNZH911uVvffu1MiGrV7rxLJxVlHAgpSCmTCneqyrcheNOorU_f-70iWB1aVKlFdWhR_beYLLedxemglYs-BWKKBcZYgkj0TUdbY8wxrQRaMCDsF3DHdVA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Austin, Rebekah A.</creator><creator>Sierawski, Brian D.</creator><creator>Reed, Robert A.</creator><creator>Schrimpf, Ronald D.</creator><creator>Galloway, Kenneth F.</creator><creator>Ball, Dennis R.</creator><creator>Witulski, Arthur F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-0441-5444</orcidid><orcidid>https://orcid.org/0000-0001-9444-6692</orcidid><orcidid>https://orcid.org/0000-0003-0411-1835</orcidid><orcidid>https://orcid.org/0000-0001-9303-9980</orcidid><orcidid>https://orcid.org/0000-0001-7419-2701</orcidid><orcidid>https://orcid.org/0000-0003-2580-8703</orcidid><orcidid>https://orcid.org/0000-0003-0787-6841</orcidid></search><sort><creationdate>20200101</creationdate><title>Inclusion of Radiation Environment Variability for Reliability Estimates for SiC Power MOSFETs</title><author>Austin, Rebekah A. ; Sierawski, Brian D. ; Reed, Robert A. ; Schrimpf, Ronald D. ; Galloway, Kenneth F. ; Ball, Dennis R. ; Witulski, Arthur F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-5dc4d363c3e122a7f5678a93423a63d3fed27ebb2ca5249404893344751729f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Burnout</topic><topic>Electric potential</topic><topic>Energetic particles</topic><topic>Energy transfer</topic><topic>Environments</topic><topic>Field effect transistors</topic><topic>Fluence</topic><topic>Heavy-ion</topic><topic>Ions</topic><topic>Linear energy transfer (LET)</topic><topic>Mathematical analysis</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>Nuclear Physics</topic><topic>power MOSFETs</topic><topic>probabilistic risk assessment</topic><topic>Probability</topic><topic>Radiation</topic><topic>radiation hardness assurance (RHA) methodology</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>reliability estimation</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>Solar power</topic><topic>Solar radiation shielding</topic><topic>Statistical analysis</topic><topic>Threshold voltage</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Austin, Rebekah A.</creatorcontrib><creatorcontrib>Sierawski, Brian D.</creatorcontrib><creatorcontrib>Reed, Robert A.</creatorcontrib><creatorcontrib>Schrimpf, Ronald D.</creatorcontrib><creatorcontrib>Galloway, Kenneth F.</creatorcontrib><creatorcontrib>Ball, Dennis R.</creatorcontrib><creatorcontrib>Witulski, Arthur F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Austin, Rebekah A.</au><au>Sierawski, Brian D.</au><au>Reed, Robert A.</au><au>Schrimpf, Ronald D.</au><au>Galloway, Kenneth F.</au><au>Ball, Dennis R.</au><au>Witulski, Arthur F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inclusion of Radiation Environment Variability for Reliability Estimates for SiC Power MOSFETs</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>67</volume><issue>1</issue><spage>353</spage><epage>357</epage><pages>353-357</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Variability of the solar energetic particle environment is investigated for single-event burnout (SEB) reliability of silicon carbide power metal-oxide-semiconductor field-effect transistors. A probabilistic assessment of failure evaluates the benefits of derating voltage, shielding, and mission length. The Prediction of Solar particle Yields for Characterizing Integrating Circuits code is used to calculate a cumulative density function for the fluence of the environment. The lethal ion method is then used to determine what proportion of the environment will cause SEB. The operating voltage determines the lowest linear energy transfer (LET) particle that will cause SEB, and that should be included in the environment distribution. The shielding and mission length also determines the final environment distribution of the mission fluence. When the critical LET for a device is relatively low for the expected mission environment, the method in this article can calculate the probability of failure from a destructive event. The calculated probability of failure enables the consideration of part use outside the safe operating area, especially when derating the operating voltage would eliminate the technology advantage of the part.</abstract><cop>Goddard Space Flight Center</cop><pub>IEEE</pub><doi>10.1109/TNS.2019.2957979</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0441-5444</orcidid><orcidid>https://orcid.org/0000-0001-9444-6692</orcidid><orcidid>https://orcid.org/0000-0003-0411-1835</orcidid><orcidid>https://orcid.org/0000-0001-9303-9980</orcidid><orcidid>https://orcid.org/0000-0001-7419-2701</orcidid><orcidid>https://orcid.org/0000-0003-2580-8703</orcidid><orcidid>https://orcid.org/0000-0003-0787-6841</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2020-01, Vol.67 (1), p.353-357 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_ieee_primary_8926391 |
source | IEEE Electronic Library (IEL) |
subjects | Burnout Electric potential Energetic particles Energy transfer Environments Field effect transistors Fluence Heavy-ion Ions Linear energy transfer (LET) Mathematical analysis MOSFET MOSFETs Nuclear Physics power MOSFETs probabilistic risk assessment Probability Radiation radiation hardness assurance (RHA) methodology Reliability Reliability analysis reliability estimation Semiconductor devices Silicon Silicon carbide Solar power Solar radiation shielding Statistical analysis Threshold voltage Voltage |
title | Inclusion of Radiation Environment Variability for Reliability Estimates for SiC Power MOSFETs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inclusion%20of%20Radiation%20Environment%20Variability%20for%20Reliability%20Estimates%20for%20SiC%20Power%20MOSFETs&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Austin,%20Rebekah%20A.&rft.date=2020-01-01&rft.volume=67&rft.issue=1&rft.spage=353&rft.epage=357&rft.pages=353-357&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2019.2957979&rft_dat=%3Cproquest_RIE%3E2349116187%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349116187&rft_id=info:pmid/&rft_ieee_id=8926391&rfr_iscdi=true |