Riemannian Optimal Identification Method for Linear Systems With Symmetric Positive-Definite Matrix
This article develops identification methods for linear continuous-time symmetric systems, such as electrical network systems, multiagent network systems, and temperature dynamics in buildings. To this end, we formulate three system identification problems for the corresponding discrete-time systems...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2020-11, Vol.65 (11), p.4493-4508 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4508 |
---|---|
container_issue | 11 |
container_start_page | 4493 |
container_title | IEEE transactions on automatic control |
container_volume | 65 |
creator | Sato, Kazuhiro Sato, Hiroyuki Damm, Tobias |
description | This article develops identification methods for linear continuous-time symmetric systems, such as electrical network systems, multiagent network systems, and temperature dynamics in buildings. To this end, we formulate three system identification problems for the corresponding discrete-time systems. The first is a least-squares problem in which we wish to minimize the sum of squared errors between the true and model outputs on the product manifold of the manifold of symmetric positive-definite matrices and two Euclidean spaces. In the second problem, to reduce the search dimensions, the product manifold is replaced with the quotient set under a specified group action by the orthogonal group. In the third problem, the manifold of symmetric positive-definite matrices in the first problem is replaced by the manifold of matrices with only positive diagonal elements. In particular, we examine the quotient geometry in the second problem. We propose Riemannian conjugate gradient methods for the three problems, and select initial points using a popular subspace method. The effectiveness of our proposed methods is demonstrated through numerical simulations and comparisons with the Gauss-Newton method, which is one of the most popular approach for solving least-squares problems. |
doi_str_mv | 10.1109/TAC.2019.2957350 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8919988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8919988</ieee_id><sourcerecordid>2456530450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-f6fe295bee6344852d4df8f8b8303834880fb31b80bc457bc3a3724580c3806d3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dRkkkwzS6mvQktFKy5DJnNDU5xMTVKx_96UFleXwz3nPj6ErikZUUrqu-X9ZFQSWo_KWoyZICdoQIWQRSlKdooGhFBZ1KWsztFFjOssK87pAJk3B5323mmPF5vkOv2Fpy345KwzOrne4zmkVd9i2wc8cx50wO-7mKCL-NOlVRZdByk4g1_76JL7geIBrPMuAZ7r3Pi9RGdWf0W4OtYh-nh6XE5eitnieTq5nxWGMZYKW1nIxzcAFeNcirLlrZVWNpIRJhmXktiG0UaSxnAxbgzTbFxyIYlhklQtG6Lbw9xN6L-3EJNa99vg80qVbZVghAuSXeTgMqGPMYBVm5DfDjtFidqjVBml2qNUR5Q5cnOIOAD4t8ua1rWU7A_ffW-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456530450</pqid></control><display><type>article</type><title>Riemannian Optimal Identification Method for Linear Systems With Symmetric Positive-Definite Matrix</title><source>IEEE Electronic Library (IEL)</source><creator>Sato, Kazuhiro ; Sato, Hiroyuki ; Damm, Tobias</creator><creatorcontrib>Sato, Kazuhiro ; Sato, Hiroyuki ; Damm, Tobias</creatorcontrib><description>This article develops identification methods for linear continuous-time symmetric systems, such as electrical network systems, multiagent network systems, and temperature dynamics in buildings. To this end, we formulate three system identification problems for the corresponding discrete-time systems. The first is a least-squares problem in which we wish to minimize the sum of squared errors between the true and model outputs on the product manifold of the manifold of symmetric positive-definite matrices and two Euclidean spaces. In the second problem, to reduce the search dimensions, the product manifold is replaced with the quotient set under a specified group action by the orthogonal group. In the third problem, the manifold of symmetric positive-definite matrices in the first problem is replaced by the manifold of matrices with only positive diagonal elements. In particular, we examine the quotient geometry in the second problem. We propose Riemannian conjugate gradient methods for the three problems, and select initial points using a popular subspace method. The effectiveness of our proposed methods is demonstrated through numerical simulations and comparisons with the Gauss-Newton method, which is one of the most popular approach for solving least-squares problems.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2019.2957350</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Buildings ; Discrete time systems ; Electrical networks ; Electronic mail ; Euclidean geometry ; Identification methods ; Least squares method ; Linear systems ; Manifolds ; Manifolds (mathematics) ; Mathematical analysis ; Mathematical models ; Matrix methods ; Measurement ; Multiagent systems ; Newton methods ; Numerical methods ; Optimization ; Quotients ; Riemannian optimization ; Subspace methods ; Symmetric matrices ; symmetry ; System identification</subject><ispartof>IEEE transactions on automatic control, 2020-11, Vol.65 (11), p.4493-4508</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-f6fe295bee6344852d4df8f8b8303834880fb31b80bc457bc3a3724580c3806d3</citedby><cites>FETCH-LOGICAL-c333t-f6fe295bee6344852d4df8f8b8303834880fb31b80bc457bc3a3724580c3806d3</cites><orcidid>0000-0002-8550-8174 ; 0000-0003-1399-8140 ; 0000-0003-1895-6548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8919988$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Sato, Kazuhiro</creatorcontrib><creatorcontrib>Sato, Hiroyuki</creatorcontrib><creatorcontrib>Damm, Tobias</creatorcontrib><title>Riemannian Optimal Identification Method for Linear Systems With Symmetric Positive-Definite Matrix</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This article develops identification methods for linear continuous-time symmetric systems, such as electrical network systems, multiagent network systems, and temperature dynamics in buildings. To this end, we formulate three system identification problems for the corresponding discrete-time systems. The first is a least-squares problem in which we wish to minimize the sum of squared errors between the true and model outputs on the product manifold of the manifold of symmetric positive-definite matrices and two Euclidean spaces. In the second problem, to reduce the search dimensions, the product manifold is replaced with the quotient set under a specified group action by the orthogonal group. In the third problem, the manifold of symmetric positive-definite matrices in the first problem is replaced by the manifold of matrices with only positive diagonal elements. In particular, we examine the quotient geometry in the second problem. We propose Riemannian conjugate gradient methods for the three problems, and select initial points using a popular subspace method. The effectiveness of our proposed methods is demonstrated through numerical simulations and comparisons with the Gauss-Newton method, which is one of the most popular approach for solving least-squares problems.</description><subject>Buildings</subject><subject>Discrete time systems</subject><subject>Electrical networks</subject><subject>Electronic mail</subject><subject>Euclidean geometry</subject><subject>Identification methods</subject><subject>Least squares method</subject><subject>Linear systems</subject><subject>Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>Measurement</subject><subject>Multiagent systems</subject><subject>Newton methods</subject><subject>Numerical methods</subject><subject>Optimization</subject><subject>Quotients</subject><subject>Riemannian optimization</subject><subject>Subspace methods</subject><subject>Symmetric matrices</subject><subject>symmetry</subject><subject>System identification</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dRkkkwzS6mvQktFKy5DJnNDU5xMTVKx_96UFleXwz3nPj6ErikZUUrqu-X9ZFQSWo_KWoyZICdoQIWQRSlKdooGhFBZ1KWsztFFjOssK87pAJk3B5323mmPF5vkOv2Fpy345KwzOrne4zmkVd9i2wc8cx50wO-7mKCL-NOlVRZdByk4g1_76JL7geIBrPMuAZ7r3Pi9RGdWf0W4OtYh-nh6XE5eitnieTq5nxWGMZYKW1nIxzcAFeNcirLlrZVWNpIRJhmXktiG0UaSxnAxbgzTbFxyIYlhklQtG6Lbw9xN6L-3EJNa99vg80qVbZVghAuSXeTgMqGPMYBVm5DfDjtFidqjVBml2qNUR5Q5cnOIOAD4t8ua1rWU7A_ffW-w</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Sato, Kazuhiro</creator><creator>Sato, Hiroyuki</creator><creator>Damm, Tobias</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8550-8174</orcidid><orcidid>https://orcid.org/0000-0003-1399-8140</orcidid><orcidid>https://orcid.org/0000-0003-1895-6548</orcidid></search><sort><creationdate>20201101</creationdate><title>Riemannian Optimal Identification Method for Linear Systems With Symmetric Positive-Definite Matrix</title><author>Sato, Kazuhiro ; Sato, Hiroyuki ; Damm, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-f6fe295bee6344852d4df8f8b8303834880fb31b80bc457bc3a3724580c3806d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Buildings</topic><topic>Discrete time systems</topic><topic>Electrical networks</topic><topic>Electronic mail</topic><topic>Euclidean geometry</topic><topic>Identification methods</topic><topic>Least squares method</topic><topic>Linear systems</topic><topic>Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>Measurement</topic><topic>Multiagent systems</topic><topic>Newton methods</topic><topic>Numerical methods</topic><topic>Optimization</topic><topic>Quotients</topic><topic>Riemannian optimization</topic><topic>Subspace methods</topic><topic>Symmetric matrices</topic><topic>symmetry</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, Kazuhiro</creatorcontrib><creatorcontrib>Sato, Hiroyuki</creatorcontrib><creatorcontrib>Damm, Tobias</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, Kazuhiro</au><au>Sato, Hiroyuki</au><au>Damm, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemannian Optimal Identification Method for Linear Systems With Symmetric Positive-Definite Matrix</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>65</volume><issue>11</issue><spage>4493</spage><epage>4508</epage><pages>4493-4508</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This article develops identification methods for linear continuous-time symmetric systems, such as electrical network systems, multiagent network systems, and temperature dynamics in buildings. To this end, we formulate three system identification problems for the corresponding discrete-time systems. The first is a least-squares problem in which we wish to minimize the sum of squared errors between the true and model outputs on the product manifold of the manifold of symmetric positive-definite matrices and two Euclidean spaces. In the second problem, to reduce the search dimensions, the product manifold is replaced with the quotient set under a specified group action by the orthogonal group. In the third problem, the manifold of symmetric positive-definite matrices in the first problem is replaced by the manifold of matrices with only positive diagonal elements. In particular, we examine the quotient geometry in the second problem. We propose Riemannian conjugate gradient methods for the three problems, and select initial points using a popular subspace method. The effectiveness of our proposed methods is demonstrated through numerical simulations and comparisons with the Gauss-Newton method, which is one of the most popular approach for solving least-squares problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2019.2957350</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8550-8174</orcidid><orcidid>https://orcid.org/0000-0003-1399-8140</orcidid><orcidid>https://orcid.org/0000-0003-1895-6548</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2020-11, Vol.65 (11), p.4493-4508 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_8919988 |
source | IEEE Electronic Library (IEL) |
subjects | Buildings Discrete time systems Electrical networks Electronic mail Euclidean geometry Identification methods Least squares method Linear systems Manifolds Manifolds (mathematics) Mathematical analysis Mathematical models Matrix methods Measurement Multiagent systems Newton methods Numerical methods Optimization Quotients Riemannian optimization Subspace methods Symmetric matrices symmetry System identification |
title | Riemannian Optimal Identification Method for Linear Systems With Symmetric Positive-Definite Matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemannian%20Optimal%20Identification%20Method%20for%20Linear%20Systems%20With%20Symmetric%20Positive-Definite%20Matrix&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Sato,%20Kazuhiro&rft.date=2020-11-01&rft.volume=65&rft.issue=11&rft.spage=4493&rft.epage=4508&rft.pages=4493-4508&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2019.2957350&rft_dat=%3Cproquest_ieee_%3E2456530450%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456530450&rft_id=info:pmid/&rft_ieee_id=8919988&rfr_iscdi=true |