A Dynamic Model of Small Modular Reactor Based Nuclear Plant for Power System Studies

Small modular reactors (SMRs), an emerging nuclear power plant technology, are suitable for large grids as well as remote load centers and offer load following and frequency response capabilities. While the SMRs have expectedly higher response rates, detailed dynamic models including reactor dynamic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on energy conversion 2020-06, Vol.35 (2), p.977-985
Hauptverfasser: Poudel, Bikash, Joshi, Kalpesh, Gokaraju, Ramakrishna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 985
container_issue 2
container_start_page 977
container_title IEEE transactions on energy conversion
container_volume 35
creator Poudel, Bikash
Joshi, Kalpesh
Gokaraju, Ramakrishna
description Small modular reactors (SMRs), an emerging nuclear power plant technology, are suitable for large grids as well as remote load centers and offer load following and frequency response capabilities. While the SMRs have expectedly higher response rates, detailed dynamic models including reactor dynamics are necessary for power system dynamic studies. This paper presents a dynamic model of an integral pressurized water reactor (iPWR)-type SMR, modeled in Siemens PTI PSS/E, to assess the contribution of the reactor to the power system dynamics. The proposed SMR model mimics the heat generation process and subsequent heat transfer process with the inclusion of the reactor core based on point kinetics, primary coolant based on natural circulation, and a simplified three lump representation of the steam generator. Controllers are designed to operate the turbine valve and reactor control rod in closed loops. The SMR model is integrated with the modified turbine-governor system and a power system study is conducted. Results show the power system and internal reactor responses when subjected to electrical demand variations of 20{\%} rated electrical output (REO) with a valve rate limit of \pm \text{80}{\%} REO/min.
doi_str_mv 10.1109/TEC.2019.2956707
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8918065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8918065</ieee_id><sourcerecordid>2405731981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d01d1b044de48d0f3f7518954738871d2bbee1720efb2b09583fc78f69e5c9f23</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6kzm2x291hr_YCqxbbnsElmISVp6m6C9N-bUvE0zMvzzsDD2C3CBBHMw3o-mwhAMxFGpgrUGRuhlDoCkOacjUBrGWmTmkt2FcIWABMpcMQ2U_502NmmKvh7W1LNW8dXja3r49rX1vMvskXXev5oA5X8oy9qGtJlbXcdd0O-bH_I89UhdNTwVdeXFYVrduFsHejmb47Z5nm-nr1Gi8-Xt9l0ERXCYBeVgCXmkCQlJboEFzslURuZqFhrhaXIcyJUAsjlIgcjdewKpV1qSBbGiXjM7k9397797il02bbt_W54mYkEpIrRaBwoOFGFb0Pw5LK9rxrrDxlCdpSXDfKyo7zsT95QuTtVKiL6x7VBDamMfwFJW2ld</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405731981</pqid></control><display><type>article</type><title>A Dynamic Model of Small Modular Reactor Based Nuclear Plant for Power System Studies</title><source>IEEE Electronic Library (IEL)</source><creator>Poudel, Bikash ; Joshi, Kalpesh ; Gokaraju, Ramakrishna</creator><creatorcontrib>Poudel, Bikash ; Joshi, Kalpesh ; Gokaraju, Ramakrishna</creatorcontrib><description><![CDATA[Small modular reactors (SMRs), an emerging nuclear power plant technology, are suitable for large grids as well as remote load centers and offer load following and frequency response capabilities. While the SMRs have expectedly higher response rates, detailed dynamic models including reactor dynamics are necessary for power system dynamic studies. This paper presents a dynamic model of an integral pressurized water reactor (iPWR)-type SMR, modeled in Siemens PTI PSS/E, to assess the contribution of the reactor to the power system dynamics. The proposed SMR model mimics the heat generation process and subsequent heat transfer process with the inclusion of the reactor core based on point kinetics, primary coolant based on natural circulation, and a simplified three lump representation of the steam generator. Controllers are designed to operate the turbine valve and reactor control rod in closed loops. The SMR model is integrated with the modified turbine-governor system and a power system study is conducted. Results show the power system and internal reactor responses when subjected to electrical demand variations of 20<inline-formula><tex-math notation="LaTeX">{\%}</tex-math></inline-formula> rated electrical output (REO) with a valve rate limit of <inline-formula><tex-math notation="LaTeX">\pm \text{80}{\%}</tex-math></inline-formula> REO/min.]]></description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2019.2956707</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Boilers ; Closed loops ; Control rods ; Coolants ; Dynamic modeling ; Dynamic models ; Electric power systems ; Frequency response ; Fuels ; Governor response ; Heat generation ; Inductors ; Integral pressurized water reactor (iPWR) ; Legged locomotion ; Metals ; Modular systems ; Nuclear electric power generation ; Nuclear power plant (NPP) ; Nuclear power plants ; Nuclear reactors ; Power system dynamic studies ; Power system dynamics ; Pressurized water reactors ; Reaction kinetics ; Reactor dynamics ; Small modular reactor (SMR) ; System dynamics ; Turbines</subject><ispartof>IEEE transactions on energy conversion, 2020-06, Vol.35 (2), p.977-985</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d01d1b044de48d0f3f7518954738871d2bbee1720efb2b09583fc78f69e5c9f23</citedby><cites>FETCH-LOGICAL-c291t-d01d1b044de48d0f3f7518954738871d2bbee1720efb2b09583fc78f69e5c9f23</cites><orcidid>0000-0002-7222-434 ; 0000-0002-1331-7002 ; 0000-0001-8840-6491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8918065$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8918065$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Poudel, Bikash</creatorcontrib><creatorcontrib>Joshi, Kalpesh</creatorcontrib><creatorcontrib>Gokaraju, Ramakrishna</creatorcontrib><title>A Dynamic Model of Small Modular Reactor Based Nuclear Plant for Power System Studies</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description><![CDATA[Small modular reactors (SMRs), an emerging nuclear power plant technology, are suitable for large grids as well as remote load centers and offer load following and frequency response capabilities. While the SMRs have expectedly higher response rates, detailed dynamic models including reactor dynamics are necessary for power system dynamic studies. This paper presents a dynamic model of an integral pressurized water reactor (iPWR)-type SMR, modeled in Siemens PTI PSS/E, to assess the contribution of the reactor to the power system dynamics. The proposed SMR model mimics the heat generation process and subsequent heat transfer process with the inclusion of the reactor core based on point kinetics, primary coolant based on natural circulation, and a simplified three lump representation of the steam generator. Controllers are designed to operate the turbine valve and reactor control rod in closed loops. The SMR model is integrated with the modified turbine-governor system and a power system study is conducted. Results show the power system and internal reactor responses when subjected to electrical demand variations of 20<inline-formula><tex-math notation="LaTeX">{\%}</tex-math></inline-formula> rated electrical output (REO) with a valve rate limit of <inline-formula><tex-math notation="LaTeX">\pm \text{80}{\%}</tex-math></inline-formula> REO/min.]]></description><subject>Boilers</subject><subject>Closed loops</subject><subject>Control rods</subject><subject>Coolants</subject><subject>Dynamic modeling</subject><subject>Dynamic models</subject><subject>Electric power systems</subject><subject>Frequency response</subject><subject>Fuels</subject><subject>Governor response</subject><subject>Heat generation</subject><subject>Inductors</subject><subject>Integral pressurized water reactor (iPWR)</subject><subject>Legged locomotion</subject><subject>Metals</subject><subject>Modular systems</subject><subject>Nuclear electric power generation</subject><subject>Nuclear power plant (NPP)</subject><subject>Nuclear power plants</subject><subject>Nuclear reactors</subject><subject>Power system dynamic studies</subject><subject>Power system dynamics</subject><subject>Pressurized water reactors</subject><subject>Reaction kinetics</subject><subject>Reactor dynamics</subject><subject>Small modular reactor (SMR)</subject><subject>System dynamics</subject><subject>Turbines</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6kzm2x291hr_YCqxbbnsElmISVp6m6C9N-bUvE0zMvzzsDD2C3CBBHMw3o-mwhAMxFGpgrUGRuhlDoCkOacjUBrGWmTmkt2FcIWABMpcMQ2U_502NmmKvh7W1LNW8dXja3r49rX1vMvskXXev5oA5X8oy9qGtJlbXcdd0O-bH_I89UhdNTwVdeXFYVrduFsHejmb47Z5nm-nr1Gi8-Xt9l0ERXCYBeVgCXmkCQlJboEFzslURuZqFhrhaXIcyJUAsjlIgcjdewKpV1qSBbGiXjM7k9397797il02bbt_W54mYkEpIrRaBwoOFGFb0Pw5LK9rxrrDxlCdpSXDfKyo7zsT95QuTtVKiL6x7VBDamMfwFJW2ld</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Poudel, Bikash</creator><creator>Joshi, Kalpesh</creator><creator>Gokaraju, Ramakrishna</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7222-434</orcidid><orcidid>https://orcid.org/0000-0002-1331-7002</orcidid><orcidid>https://orcid.org/0000-0001-8840-6491</orcidid></search><sort><creationdate>202006</creationdate><title>A Dynamic Model of Small Modular Reactor Based Nuclear Plant for Power System Studies</title><author>Poudel, Bikash ; Joshi, Kalpesh ; Gokaraju, Ramakrishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d01d1b044de48d0f3f7518954738871d2bbee1720efb2b09583fc78f69e5c9f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boilers</topic><topic>Closed loops</topic><topic>Control rods</topic><topic>Coolants</topic><topic>Dynamic modeling</topic><topic>Dynamic models</topic><topic>Electric power systems</topic><topic>Frequency response</topic><topic>Fuels</topic><topic>Governor response</topic><topic>Heat generation</topic><topic>Inductors</topic><topic>Integral pressurized water reactor (iPWR)</topic><topic>Legged locomotion</topic><topic>Metals</topic><topic>Modular systems</topic><topic>Nuclear electric power generation</topic><topic>Nuclear power plant (NPP)</topic><topic>Nuclear power plants</topic><topic>Nuclear reactors</topic><topic>Power system dynamic studies</topic><topic>Power system dynamics</topic><topic>Pressurized water reactors</topic><topic>Reaction kinetics</topic><topic>Reactor dynamics</topic><topic>Small modular reactor (SMR)</topic><topic>System dynamics</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poudel, Bikash</creatorcontrib><creatorcontrib>Joshi, Kalpesh</creatorcontrib><creatorcontrib>Gokaraju, Ramakrishna</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Poudel, Bikash</au><au>Joshi, Kalpesh</au><au>Gokaraju, Ramakrishna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dynamic Model of Small Modular Reactor Based Nuclear Plant for Power System Studies</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2020-06</date><risdate>2020</risdate><volume>35</volume><issue>2</issue><spage>977</spage><epage>985</epage><pages>977-985</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract><![CDATA[Small modular reactors (SMRs), an emerging nuclear power plant technology, are suitable for large grids as well as remote load centers and offer load following and frequency response capabilities. While the SMRs have expectedly higher response rates, detailed dynamic models including reactor dynamics are necessary for power system dynamic studies. This paper presents a dynamic model of an integral pressurized water reactor (iPWR)-type SMR, modeled in Siemens PTI PSS/E, to assess the contribution of the reactor to the power system dynamics. The proposed SMR model mimics the heat generation process and subsequent heat transfer process with the inclusion of the reactor core based on point kinetics, primary coolant based on natural circulation, and a simplified three lump representation of the steam generator. Controllers are designed to operate the turbine valve and reactor control rod in closed loops. The SMR model is integrated with the modified turbine-governor system and a power system study is conducted. Results show the power system and internal reactor responses when subjected to electrical demand variations of 20<inline-formula><tex-math notation="LaTeX">{\%}</tex-math></inline-formula> rated electrical output (REO) with a valve rate limit of <inline-formula><tex-math notation="LaTeX">\pm \text{80}{\%}</tex-math></inline-formula> REO/min.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2019.2956707</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7222-434</orcidid><orcidid>https://orcid.org/0000-0002-1331-7002</orcidid><orcidid>https://orcid.org/0000-0001-8840-6491</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8969
ispartof IEEE transactions on energy conversion, 2020-06, Vol.35 (2), p.977-985
issn 0885-8969
1558-0059
language eng
recordid cdi_ieee_primary_8918065
source IEEE Electronic Library (IEL)
subjects Boilers
Closed loops
Control rods
Coolants
Dynamic modeling
Dynamic models
Electric power systems
Frequency response
Fuels
Governor response
Heat generation
Inductors
Integral pressurized water reactor (iPWR)
Legged locomotion
Metals
Modular systems
Nuclear electric power generation
Nuclear power plant (NPP)
Nuclear power plants
Nuclear reactors
Power system dynamic studies
Power system dynamics
Pressurized water reactors
Reaction kinetics
Reactor dynamics
Small modular reactor (SMR)
System dynamics
Turbines
title A Dynamic Model of Small Modular Reactor Based Nuclear Plant for Power System Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dynamic%20Model%20of%20Small%20Modular%20Reactor%20Based%20Nuclear%20Plant%20for%20Power%20System%20Studies&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Poudel,%20Bikash&rft.date=2020-06&rft.volume=35&rft.issue=2&rft.spage=977&rft.epage=985&rft.pages=977-985&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2019.2956707&rft_dat=%3Cproquest_RIE%3E2405731981%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405731981&rft_id=info:pmid/&rft_ieee_id=8918065&rfr_iscdi=true