Study on the Interfacial Residual Stress of Flip-Chip Joints Based on Anisotropic Conductive Adhesive

Interfacial residual stress resulting from coefficient of thermal expansion mismatch between different layers of the flip-chip joint is induced during the bonding process. The flip-chip joints suffer residual stresses that may cause cracking or delamination, which is one of the major reliability iss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.171923-171933
Hauptverfasser: Wu, Guanghua, Jiang, Meixian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171933
container_issue
container_start_page 171923
container_title IEEE access
container_volume 7
creator Wu, Guanghua
Jiang, Meixian
description Interfacial residual stress resulting from coefficient of thermal expansion mismatch between different layers of the flip-chip joint is induced during the bonding process. The flip-chip joints suffer residual stresses that may cause cracking or delamination, which is one of the major reliability issues in electronic packaging. This paper theoretically analyzes the interfacial residual stress of the flip-chip joint based on anisotropic conductive adhesive (ACA). The residual stress model is established based on refined zigzag theory (RZT). Results show that the theoretical model and the simulation analysis are consistent. It is found that the interfacial thermal residual stress in the ACA layer is uneven and reaches its peak at the end of the bump. The RZT model is validated by experiments, and the model prediction agrees well with the test results.
doi_str_mv 10.1109/ACCESS.2019.2956648
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8917614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8917614</ieee_id><doaj_id>oai_doaj_org_article_23e8f614e05b467b92f951e922a65669</doaj_id><sourcerecordid>2455643796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3238-2d7af76d686c0c33e296aa8b33f7744c464277483f8dd05358df488ea1fc8b923</originalsourceid><addsrcrecordid>eNpNkU9r3DAQxU1oISHJJ8hF0LO31l9Lx61Jmi2BQDY9C6006mrZWq4kB_Lto61DiC56DPN7M8xrmhvcrTDu1Pf1MNxutyvSYbUiigvB5FlzQbBQLeVUfPmkz5vrnA9dfbKWeH_RwLbM7hXFEZU9oM1YIHljgzmiJ8jBzVVsS4KcUfTo7himdtiHCf2KYSwZ_TAZ3AlejyHHkuIULBri6GZbwgugtdtXlxe4ar56c8xw_f5fNr_vbp-H-_bh8edmWD-0lhIqW-J643vhhBS2s5QCUcIYuaPU9z1jlglGqpDUS-c6Trl0nkkJBnsrd4rQy2az-LpoDnpK4a9JrzqaoP8XYvqjTSrBHkETCtILzKDjOyb6SnvFMShCjKg3VNXr2-I1pfhvhlz0Ic5prOtrwjgXjPZK1C66dNkUc07gP6biTp_i0Us8-hSPfo-nUjcLFQDgg5AK93Uj-gbrBIoT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455643796</pqid></control><display><type>article</type><title>Study on the Interfacial Residual Stress of Flip-Chip Joints Based on Anisotropic Conductive Adhesive</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wu, Guanghua ; Jiang, Meixian</creator><creatorcontrib>Wu, Guanghua ; Jiang, Meixian</creatorcontrib><description>Interfacial residual stress resulting from coefficient of thermal expansion mismatch between different layers of the flip-chip joint is induced during the bonding process. The flip-chip joints suffer residual stresses that may cause cracking or delamination, which is one of the major reliability issues in electronic packaging. This paper theoretically analyzes the interfacial residual stress of the flip-chip joint based on anisotropic conductive adhesive (ACA). The residual stress model is established based on refined zigzag theory (RZT). Results show that the theoretical model and the simulation analysis are consistent. It is found that the interfacial thermal residual stress in the ACA layer is uneven and reaches its peak at the end of the bump. The RZT model is validated by experiments, and the model prediction agrees well with the test results.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2956648</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adhesive joints ; Analytical models ; anisotropic conductive adhesive (ACA) ; Bonded joints ; Bonding ; Electronic packaging ; Electronic packaging thermal management ; flip chip ; Flip-chip devices ; Interfacial residual stress ; refined zigzag theory ; Reliability analysis ; Residual stress ; Residual stresses ; Thermal expansion ; Thermal stresses</subject><ispartof>IEEE access, 2019, Vol.7, p.171923-171933</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3238-2d7af76d686c0c33e296aa8b33f7744c464277483f8dd05358df488ea1fc8b923</citedby><cites>FETCH-LOGICAL-c3238-2d7af76d686c0c33e296aa8b33f7744c464277483f8dd05358df488ea1fc8b923</cites><orcidid>0000-0002-5327-2881 ; 0000-0001-7639-5385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8917614$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wu, Guanghua</creatorcontrib><creatorcontrib>Jiang, Meixian</creatorcontrib><title>Study on the Interfacial Residual Stress of Flip-Chip Joints Based on Anisotropic Conductive Adhesive</title><title>IEEE access</title><addtitle>Access</addtitle><description>Interfacial residual stress resulting from coefficient of thermal expansion mismatch between different layers of the flip-chip joint is induced during the bonding process. The flip-chip joints suffer residual stresses that may cause cracking or delamination, which is one of the major reliability issues in electronic packaging. This paper theoretically analyzes the interfacial residual stress of the flip-chip joint based on anisotropic conductive adhesive (ACA). The residual stress model is established based on refined zigzag theory (RZT). Results show that the theoretical model and the simulation analysis are consistent. It is found that the interfacial thermal residual stress in the ACA layer is uneven and reaches its peak at the end of the bump. The RZT model is validated by experiments, and the model prediction agrees well with the test results.</description><subject>Adhesive joints</subject><subject>Analytical models</subject><subject>anisotropic conductive adhesive (ACA)</subject><subject>Bonded joints</subject><subject>Bonding</subject><subject>Electronic packaging</subject><subject>Electronic packaging thermal management</subject><subject>flip chip</subject><subject>Flip-chip devices</subject><subject>Interfacial residual stress</subject><subject>refined zigzag theory</subject><subject>Reliability analysis</subject><subject>Residual stress</subject><subject>Residual stresses</subject><subject>Thermal expansion</subject><subject>Thermal stresses</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9r3DAQxU1oISHJJ8hF0LO31l9Lx61Jmi2BQDY9C6006mrZWq4kB_Lto61DiC56DPN7M8xrmhvcrTDu1Pf1MNxutyvSYbUiigvB5FlzQbBQLeVUfPmkz5vrnA9dfbKWeH_RwLbM7hXFEZU9oM1YIHljgzmiJ8jBzVVsS4KcUfTo7himdtiHCf2KYSwZ_TAZ3AlejyHHkuIULBri6GZbwgugtdtXlxe4ar56c8xw_f5fNr_vbp-H-_bh8edmWD-0lhIqW-J643vhhBS2s5QCUcIYuaPU9z1jlglGqpDUS-c6Trl0nkkJBnsrd4rQy2az-LpoDnpK4a9JrzqaoP8XYvqjTSrBHkETCtILzKDjOyb6SnvFMShCjKg3VNXr2-I1pfhvhlz0Ic5prOtrwjgXjPZK1C66dNkUc07gP6biTp_i0Us8-hSPfo-nUjcLFQDgg5AK93Uj-gbrBIoT</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wu, Guanghua</creator><creator>Jiang, Meixian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5327-2881</orcidid><orcidid>https://orcid.org/0000-0001-7639-5385</orcidid></search><sort><creationdate>2019</creationdate><title>Study on the Interfacial Residual Stress of Flip-Chip Joints Based on Anisotropic Conductive Adhesive</title><author>Wu, Guanghua ; Jiang, Meixian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3238-2d7af76d686c0c33e296aa8b33f7744c464277483f8dd05358df488ea1fc8b923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adhesive joints</topic><topic>Analytical models</topic><topic>anisotropic conductive adhesive (ACA)</topic><topic>Bonded joints</topic><topic>Bonding</topic><topic>Electronic packaging</topic><topic>Electronic packaging thermal management</topic><topic>flip chip</topic><topic>Flip-chip devices</topic><topic>Interfacial residual stress</topic><topic>refined zigzag theory</topic><topic>Reliability analysis</topic><topic>Residual stress</topic><topic>Residual stresses</topic><topic>Thermal expansion</topic><topic>Thermal stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Guanghua</creatorcontrib><creatorcontrib>Jiang, Meixian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Guanghua</au><au>Jiang, Meixian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Interfacial Residual Stress of Flip-Chip Joints Based on Anisotropic Conductive Adhesive</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>171923</spage><epage>171933</epage><pages>171923-171933</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Interfacial residual stress resulting from coefficient of thermal expansion mismatch between different layers of the flip-chip joint is induced during the bonding process. The flip-chip joints suffer residual stresses that may cause cracking or delamination, which is one of the major reliability issues in electronic packaging. This paper theoretically analyzes the interfacial residual stress of the flip-chip joint based on anisotropic conductive adhesive (ACA). The residual stress model is established based on refined zigzag theory (RZT). Results show that the theoretical model and the simulation analysis are consistent. It is found that the interfacial thermal residual stress in the ACA layer is uneven and reaches its peak at the end of the bump. The RZT model is validated by experiments, and the model prediction agrees well with the test results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2956648</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5327-2881</orcidid><orcidid>https://orcid.org/0000-0001-7639-5385</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.171923-171933
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8917614
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Adhesive joints
Analytical models
anisotropic conductive adhesive (ACA)
Bonded joints
Bonding
Electronic packaging
Electronic packaging thermal management
flip chip
Flip-chip devices
Interfacial residual stress
refined zigzag theory
Reliability analysis
Residual stress
Residual stresses
Thermal expansion
Thermal stresses
title Study on the Interfacial Residual Stress of Flip-Chip Joints Based on Anisotropic Conductive Adhesive
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Interfacial%20Residual%20Stress%20of%20Flip-Chip%20Joints%20Based%20on%20Anisotropic%20Conductive%20Adhesive&rft.jtitle=IEEE%20access&rft.au=Wu,%20Guanghua&rft.date=2019&rft.volume=7&rft.spage=171923&rft.epage=171933&rft.pages=171923-171933&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2956648&rft_dat=%3Cproquest_ieee_%3E2455643796%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455643796&rft_id=info:pmid/&rft_ieee_id=8917614&rft_doaj_id=oai_doaj_org_article_23e8f614e05b467b92f951e922a65669&rfr_iscdi=true