Study on the Interfacial Residual Stress of Flip-Chip Joints Based on Anisotropic Conductive Adhesive
Interfacial residual stress resulting from coefficient of thermal expansion mismatch between different layers of the flip-chip joint is induced during the bonding process. The flip-chip joints suffer residual stresses that may cause cracking or delamination, which is one of the major reliability iss...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.171923-171933 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171933 |
---|---|
container_issue | |
container_start_page | 171923 |
container_title | IEEE access |
container_volume | 7 |
creator | Wu, Guanghua Jiang, Meixian |
description | Interfacial residual stress resulting from coefficient of thermal expansion mismatch between different layers of the flip-chip joint is induced during the bonding process. The flip-chip joints suffer residual stresses that may cause cracking or delamination, which is one of the major reliability issues in electronic packaging. This paper theoretically analyzes the interfacial residual stress of the flip-chip joint based on anisotropic conductive adhesive (ACA). The residual stress model is established based on refined zigzag theory (RZT). Results show that the theoretical model and the simulation analysis are consistent. It is found that the interfacial thermal residual stress in the ACA layer is uneven and reaches its peak at the end of the bump. The RZT model is validated by experiments, and the model prediction agrees well with the test results. |
doi_str_mv | 10.1109/ACCESS.2019.2956648 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8917614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8917614</ieee_id><doaj_id>oai_doaj_org_article_23e8f614e05b467b92f951e922a65669</doaj_id><sourcerecordid>2455643796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3238-2d7af76d686c0c33e296aa8b33f7744c464277483f8dd05358df488ea1fc8b923</originalsourceid><addsrcrecordid>eNpNkU9r3DAQxU1oISHJJ8hF0LO31l9Lx61Jmi2BQDY9C6006mrZWq4kB_Lto61DiC56DPN7M8xrmhvcrTDu1Pf1MNxutyvSYbUiigvB5FlzQbBQLeVUfPmkz5vrnA9dfbKWeH_RwLbM7hXFEZU9oM1YIHljgzmiJ8jBzVVsS4KcUfTo7himdtiHCf2KYSwZ_TAZ3AlejyHHkuIULBri6GZbwgugtdtXlxe4ar56c8xw_f5fNr_vbp-H-_bh8edmWD-0lhIqW-J643vhhBS2s5QCUcIYuaPU9z1jlglGqpDUS-c6Trl0nkkJBnsrd4rQy2az-LpoDnpK4a9JrzqaoP8XYvqjTSrBHkETCtILzKDjOyb6SnvFMShCjKg3VNXr2-I1pfhvhlz0Ic5prOtrwjgXjPZK1C66dNkUc07gP6biTp_i0Us8-hSPfo-nUjcLFQDgg5AK93Uj-gbrBIoT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455643796</pqid></control><display><type>article</type><title>Study on the Interfacial Residual Stress of Flip-Chip Joints Based on Anisotropic Conductive Adhesive</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wu, Guanghua ; Jiang, Meixian</creator><creatorcontrib>Wu, Guanghua ; Jiang, Meixian</creatorcontrib><description>Interfacial residual stress resulting from coefficient of thermal expansion mismatch between different layers of the flip-chip joint is induced during the bonding process. The flip-chip joints suffer residual stresses that may cause cracking or delamination, which is one of the major reliability issues in electronic packaging. This paper theoretically analyzes the interfacial residual stress of the flip-chip joint based on anisotropic conductive adhesive (ACA). The residual stress model is established based on refined zigzag theory (RZT). Results show that the theoretical model and the simulation analysis are consistent. It is found that the interfacial thermal residual stress in the ACA layer is uneven and reaches its peak at the end of the bump. The RZT model is validated by experiments, and the model prediction agrees well with the test results.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2956648</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adhesive joints ; Analytical models ; anisotropic conductive adhesive (ACA) ; Bonded joints ; Bonding ; Electronic packaging ; Electronic packaging thermal management ; flip chip ; Flip-chip devices ; Interfacial residual stress ; refined zigzag theory ; Reliability analysis ; Residual stress ; Residual stresses ; Thermal expansion ; Thermal stresses</subject><ispartof>IEEE access, 2019, Vol.7, p.171923-171933</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3238-2d7af76d686c0c33e296aa8b33f7744c464277483f8dd05358df488ea1fc8b923</citedby><cites>FETCH-LOGICAL-c3238-2d7af76d686c0c33e296aa8b33f7744c464277483f8dd05358df488ea1fc8b923</cites><orcidid>0000-0002-5327-2881 ; 0000-0001-7639-5385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8917614$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wu, Guanghua</creatorcontrib><creatorcontrib>Jiang, Meixian</creatorcontrib><title>Study on the Interfacial Residual Stress of Flip-Chip Joints Based on Anisotropic Conductive Adhesive</title><title>IEEE access</title><addtitle>Access</addtitle><description>Interfacial residual stress resulting from coefficient of thermal expansion mismatch between different layers of the flip-chip joint is induced during the bonding process. The flip-chip joints suffer residual stresses that may cause cracking or delamination, which is one of the major reliability issues in electronic packaging. This paper theoretically analyzes the interfacial residual stress of the flip-chip joint based on anisotropic conductive adhesive (ACA). The residual stress model is established based on refined zigzag theory (RZT). Results show that the theoretical model and the simulation analysis are consistent. It is found that the interfacial thermal residual stress in the ACA layer is uneven and reaches its peak at the end of the bump. The RZT model is validated by experiments, and the model prediction agrees well with the test results.</description><subject>Adhesive joints</subject><subject>Analytical models</subject><subject>anisotropic conductive adhesive (ACA)</subject><subject>Bonded joints</subject><subject>Bonding</subject><subject>Electronic packaging</subject><subject>Electronic packaging thermal management</subject><subject>flip chip</subject><subject>Flip-chip devices</subject><subject>Interfacial residual stress</subject><subject>refined zigzag theory</subject><subject>Reliability analysis</subject><subject>Residual stress</subject><subject>Residual stresses</subject><subject>Thermal expansion</subject><subject>Thermal stresses</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9r3DAQxU1oISHJJ8hF0LO31l9Lx61Jmi2BQDY9C6006mrZWq4kB_Lto61DiC56DPN7M8xrmhvcrTDu1Pf1MNxutyvSYbUiigvB5FlzQbBQLeVUfPmkz5vrnA9dfbKWeH_RwLbM7hXFEZU9oM1YIHljgzmiJ8jBzVVsS4KcUfTo7himdtiHCf2KYSwZ_TAZ3AlejyHHkuIULBri6GZbwgugtdtXlxe4ar56c8xw_f5fNr_vbp-H-_bh8edmWD-0lhIqW-J643vhhBS2s5QCUcIYuaPU9z1jlglGqpDUS-c6Trl0nkkJBnsrd4rQy2az-LpoDnpK4a9JrzqaoP8XYvqjTSrBHkETCtILzKDjOyb6SnvFMShCjKg3VNXr2-I1pfhvhlz0Ic5prOtrwjgXjPZK1C66dNkUc07gP6biTp_i0Us8-hSPfo-nUjcLFQDgg5AK93Uj-gbrBIoT</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wu, Guanghua</creator><creator>Jiang, Meixian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5327-2881</orcidid><orcidid>https://orcid.org/0000-0001-7639-5385</orcidid></search><sort><creationdate>2019</creationdate><title>Study on the Interfacial Residual Stress of Flip-Chip Joints Based on Anisotropic Conductive Adhesive</title><author>Wu, Guanghua ; Jiang, Meixian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3238-2d7af76d686c0c33e296aa8b33f7744c464277483f8dd05358df488ea1fc8b923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adhesive joints</topic><topic>Analytical models</topic><topic>anisotropic conductive adhesive (ACA)</topic><topic>Bonded joints</topic><topic>Bonding</topic><topic>Electronic packaging</topic><topic>Electronic packaging thermal management</topic><topic>flip chip</topic><topic>Flip-chip devices</topic><topic>Interfacial residual stress</topic><topic>refined zigzag theory</topic><topic>Reliability analysis</topic><topic>Residual stress</topic><topic>Residual stresses</topic><topic>Thermal expansion</topic><topic>Thermal stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Guanghua</creatorcontrib><creatorcontrib>Jiang, Meixian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Guanghua</au><au>Jiang, Meixian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Interfacial Residual Stress of Flip-Chip Joints Based on Anisotropic Conductive Adhesive</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>171923</spage><epage>171933</epage><pages>171923-171933</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Interfacial residual stress resulting from coefficient of thermal expansion mismatch between different layers of the flip-chip joint is induced during the bonding process. The flip-chip joints suffer residual stresses that may cause cracking or delamination, which is one of the major reliability issues in electronic packaging. This paper theoretically analyzes the interfacial residual stress of the flip-chip joint based on anisotropic conductive adhesive (ACA). The residual stress model is established based on refined zigzag theory (RZT). Results show that the theoretical model and the simulation analysis are consistent. It is found that the interfacial thermal residual stress in the ACA layer is uneven and reaches its peak at the end of the bump. The RZT model is validated by experiments, and the model prediction agrees well with the test results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2956648</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5327-2881</orcidid><orcidid>https://orcid.org/0000-0001-7639-5385</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.171923-171933 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8917614 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Adhesive joints Analytical models anisotropic conductive adhesive (ACA) Bonded joints Bonding Electronic packaging Electronic packaging thermal management flip chip Flip-chip devices Interfacial residual stress refined zigzag theory Reliability analysis Residual stress Residual stresses Thermal expansion Thermal stresses |
title | Study on the Interfacial Residual Stress of Flip-Chip Joints Based on Anisotropic Conductive Adhesive |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Interfacial%20Residual%20Stress%20of%20Flip-Chip%20Joints%20Based%20on%20Anisotropic%20Conductive%20Adhesive&rft.jtitle=IEEE%20access&rft.au=Wu,%20Guanghua&rft.date=2019&rft.volume=7&rft.spage=171923&rft.epage=171933&rft.pages=171923-171933&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2956648&rft_dat=%3Cproquest_ieee_%3E2455643796%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455643796&rft_id=info:pmid/&rft_ieee_id=8917614&rft_doaj_id=oai_doaj_org_article_23e8f614e05b467b92f951e922a65669&rfr_iscdi=true |