On the design of tele-learning systems using genetic algorithms
A tele-learning system may be modeled using an object-oriented approach which lends to eventual simulation using object-oriented languages. In this study, the human users of the system are included as system components with their own respective characteristics, as described by such descriptive socia...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1212 vol.2 |
---|---|
container_issue | |
container_start_page | 1209 |
container_title | |
container_volume | 2 |
creator | Finley, M.R. Akimaru, H. Yamori, K. |
description | A tele-learning system may be modeled using an object-oriented approach which lends to eventual simulation using object-oriented languages. In this study, the human users of the system are included as system components with their own respective characteristics, as described by such descriptive social-economic parameters as user satisfaction, user willingness to pay, and others. The current focus of the study is on the genesis of tele-learning systems, that is, a specification of fundamental descriptive parameters, somewhat akin to genes in genetics, that may be encoded as binary strings, and of a fitness function of these parameters which is to be optimized using genetic algorithms. The fitness function measures some critical aspects of the system's behaviour of interest to the system designer. The strings corresponding to the optimal value of this function then will specify an optimal system design. |
doi_str_mv | 10.1109/ICCT.2000.890889 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_890889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>890889</ieee_id><sourcerecordid>890889</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-c1ab063dcb71623171c26688636f4cee071cf2cfd566b4006157ac2d97f41d343</originalsourceid><addsrcrecordid>eNotj81qwzAQhAWl0JL6XnrSC9hdWcpKOpVi-hMI5JKcgyyvHBXbKZZ6yNvXJYWBYb6BgWHsUUAlBNjnTdPsqxoAKmPBGHvDCqsNLJIorcI7VqT0tfQgrdRK37OX3cTziXhHKfYTPweeaaByIDdPcep5uqRMY-I_6S_1NFGOnruhP88xn8b0wG6DGxIV_75ih_e3ffNZbncfm-Z1W0ahVS69cC2g7HyrBdZSaOFrRGNQYlCeCBYQah-6NWKrAFCstfN1Z3VQopNKrtjTdTcS0fF7jqObL8frS_kLqG9HRg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On the design of tele-learning systems using genetic algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Finley, M.R. ; Akimaru, H. ; Yamori, K.</creator><creatorcontrib>Finley, M.R. ; Akimaru, H. ; Yamori, K.</creatorcontrib><description>A tele-learning system may be modeled using an object-oriented approach which lends to eventual simulation using object-oriented languages. In this study, the human users of the system are included as system components with their own respective characteristics, as described by such descriptive social-economic parameters as user satisfaction, user willingness to pay, and others. The current focus of the study is on the genesis of tele-learning systems, that is, a specification of fundamental descriptive parameters, somewhat akin to genes in genetics, that may be encoded as binary strings, and of a fitness function of these parameters which is to be optimized using genetic algorithms. The fitness function measures some critical aspects of the system's behaviour of interest to the system designer. The strings corresponding to the optimal value of this function then will specify an optimal system design.</description><identifier>ISBN: 9780780363946</identifier><identifier>ISBN: 0780363949</identifier><identifier>DOI: 10.1109/ICCT.2000.890889</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Costs ; Genetic algorithms ; Hardware ; Humans ; Information management ; Object oriented modeling ; Teleconferencing ; Workstations</subject><ispartof>WCC 2000 - ICCT 2000. 2000 International Conference on Communication Technology Proceedings (Cat. No.00EX420), 2000, Vol.2, p.1209-1212 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/890889$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/890889$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Finley, M.R.</creatorcontrib><creatorcontrib>Akimaru, H.</creatorcontrib><creatorcontrib>Yamori, K.</creatorcontrib><title>On the design of tele-learning systems using genetic algorithms</title><title>WCC 2000 - ICCT 2000. 2000 International Conference on Communication Technology Proceedings (Cat. No.00EX420)</title><addtitle>ICCT</addtitle><description>A tele-learning system may be modeled using an object-oriented approach which lends to eventual simulation using object-oriented languages. In this study, the human users of the system are included as system components with their own respective characteristics, as described by such descriptive social-economic parameters as user satisfaction, user willingness to pay, and others. The current focus of the study is on the genesis of tele-learning systems, that is, a specification of fundamental descriptive parameters, somewhat akin to genes in genetics, that may be encoded as binary strings, and of a fitness function of these parameters which is to be optimized using genetic algorithms. The fitness function measures some critical aspects of the system's behaviour of interest to the system designer. The strings corresponding to the optimal value of this function then will specify an optimal system design.</description><subject>Algorithm design and analysis</subject><subject>Costs</subject><subject>Genetic algorithms</subject><subject>Hardware</subject><subject>Humans</subject><subject>Information management</subject><subject>Object oriented modeling</subject><subject>Teleconferencing</subject><subject>Workstations</subject><isbn>9780780363946</isbn><isbn>0780363949</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81qwzAQhAWl0JL6XnrSC9hdWcpKOpVi-hMI5JKcgyyvHBXbKZZ6yNvXJYWBYb6BgWHsUUAlBNjnTdPsqxoAKmPBGHvDCqsNLJIorcI7VqT0tfQgrdRK37OX3cTziXhHKfYTPweeaaByIDdPcep5uqRMY-I_6S_1NFGOnruhP88xn8b0wG6DGxIV_75ih_e3ffNZbncfm-Z1W0ahVS69cC2g7HyrBdZSaOFrRGNQYlCeCBYQah-6NWKrAFCstfN1Z3VQopNKrtjTdTcS0fF7jqObL8frS_kLqG9HRg</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Finley, M.R.</creator><creator>Akimaru, H.</creator><creator>Yamori, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>On the design of tele-learning systems using genetic algorithms</title><author>Finley, M.R. ; Akimaru, H. ; Yamori, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-c1ab063dcb71623171c26688636f4cee071cf2cfd566b4006157ac2d97f41d343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithm design and analysis</topic><topic>Costs</topic><topic>Genetic algorithms</topic><topic>Hardware</topic><topic>Humans</topic><topic>Information management</topic><topic>Object oriented modeling</topic><topic>Teleconferencing</topic><topic>Workstations</topic><toplevel>online_resources</toplevel><creatorcontrib>Finley, M.R.</creatorcontrib><creatorcontrib>Akimaru, H.</creatorcontrib><creatorcontrib>Yamori, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Finley, M.R.</au><au>Akimaru, H.</au><au>Yamori, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the design of tele-learning systems using genetic algorithms</atitle><btitle>WCC 2000 - ICCT 2000. 2000 International Conference on Communication Technology Proceedings (Cat. No.00EX420)</btitle><stitle>ICCT</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>1209</spage><epage>1212 vol.2</epage><pages>1209-1212 vol.2</pages><isbn>9780780363946</isbn><isbn>0780363949</isbn><abstract>A tele-learning system may be modeled using an object-oriented approach which lends to eventual simulation using object-oriented languages. In this study, the human users of the system are included as system components with their own respective characteristics, as described by such descriptive social-economic parameters as user satisfaction, user willingness to pay, and others. The current focus of the study is on the genesis of tele-learning systems, that is, a specification of fundamental descriptive parameters, somewhat akin to genes in genetics, that may be encoded as binary strings, and of a fitness function of these parameters which is to be optimized using genetic algorithms. The fitness function measures some critical aspects of the system's behaviour of interest to the system designer. The strings corresponding to the optimal value of this function then will specify an optimal system design.</abstract><pub>IEEE</pub><doi>10.1109/ICCT.2000.890889</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780363946 |
ispartof | WCC 2000 - ICCT 2000. 2000 International Conference on Communication Technology Proceedings (Cat. No.00EX420), 2000, Vol.2, p.1209-1212 vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_890889 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Costs Genetic algorithms Hardware Humans Information management Object oriented modeling Teleconferencing Workstations |
title | On the design of tele-learning systems using genetic algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20design%20of%20tele-learning%20systems%20using%20genetic%20algorithms&rft.btitle=WCC%202000%20-%20ICCT%202000.%202000%20International%20Conference%20on%20Communication%20Technology%20Proceedings%20(Cat.%20No.00EX420)&rft.au=Finley,%20M.R.&rft.date=2000&rft.volume=2&rft.spage=1209&rft.epage=1212%20vol.2&rft.pages=1209-1212%20vol.2&rft.isbn=9780780363946&rft.isbn_list=0780363949&rft_id=info:doi/10.1109/ICCT.2000.890889&rft_dat=%3Cieee_6IE%3E890889%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=890889&rfr_iscdi=true |