On the design of tele-learning systems using genetic algorithms

A tele-learning system may be modeled using an object-oriented approach which lends to eventual simulation using object-oriented languages. In this study, the human users of the system are included as system components with their own respective characteristics, as described by such descriptive socia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Finley, M.R., Akimaru, H., Yamori, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1212 vol.2
container_issue
container_start_page 1209
container_title
container_volume 2
creator Finley, M.R.
Akimaru, H.
Yamori, K.
description A tele-learning system may be modeled using an object-oriented approach which lends to eventual simulation using object-oriented languages. In this study, the human users of the system are included as system components with their own respective characteristics, as described by such descriptive social-economic parameters as user satisfaction, user willingness to pay, and others. The current focus of the study is on the genesis of tele-learning systems, that is, a specification of fundamental descriptive parameters, somewhat akin to genes in genetics, that may be encoded as binary strings, and of a fitness function of these parameters which is to be optimized using genetic algorithms. The fitness function measures some critical aspects of the system's behaviour of interest to the system designer. The strings corresponding to the optimal value of this function then will specify an optimal system design.
doi_str_mv 10.1109/ICCT.2000.890889
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_890889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>890889</ieee_id><sourcerecordid>890889</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-c1ab063dcb71623171c26688636f4cee071cf2cfd566b4006157ac2d97f41d343</originalsourceid><addsrcrecordid>eNotj81qwzAQhAWl0JL6XnrSC9hdWcpKOpVi-hMI5JKcgyyvHBXbKZZ6yNvXJYWBYb6BgWHsUUAlBNjnTdPsqxoAKmPBGHvDCqsNLJIorcI7VqT0tfQgrdRK37OX3cTziXhHKfYTPweeaaByIDdPcep5uqRMY-I_6S_1NFGOnruhP88xn8b0wG6DGxIV_75ih_e3ffNZbncfm-Z1W0ahVS69cC2g7HyrBdZSaOFrRGNQYlCeCBYQah-6NWKrAFCstfN1Z3VQopNKrtjTdTcS0fF7jqObL8frS_kLqG9HRg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On the design of tele-learning systems using genetic algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Finley, M.R. ; Akimaru, H. ; Yamori, K.</creator><creatorcontrib>Finley, M.R. ; Akimaru, H. ; Yamori, K.</creatorcontrib><description>A tele-learning system may be modeled using an object-oriented approach which lends to eventual simulation using object-oriented languages. In this study, the human users of the system are included as system components with their own respective characteristics, as described by such descriptive social-economic parameters as user satisfaction, user willingness to pay, and others. The current focus of the study is on the genesis of tele-learning systems, that is, a specification of fundamental descriptive parameters, somewhat akin to genes in genetics, that may be encoded as binary strings, and of a fitness function of these parameters which is to be optimized using genetic algorithms. The fitness function measures some critical aspects of the system's behaviour of interest to the system designer. The strings corresponding to the optimal value of this function then will specify an optimal system design.</description><identifier>ISBN: 9780780363946</identifier><identifier>ISBN: 0780363949</identifier><identifier>DOI: 10.1109/ICCT.2000.890889</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Costs ; Genetic algorithms ; Hardware ; Humans ; Information management ; Object oriented modeling ; Teleconferencing ; Workstations</subject><ispartof>WCC 2000 - ICCT 2000. 2000 International Conference on Communication Technology Proceedings (Cat. No.00EX420), 2000, Vol.2, p.1209-1212 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/890889$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/890889$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Finley, M.R.</creatorcontrib><creatorcontrib>Akimaru, H.</creatorcontrib><creatorcontrib>Yamori, K.</creatorcontrib><title>On the design of tele-learning systems using genetic algorithms</title><title>WCC 2000 - ICCT 2000. 2000 International Conference on Communication Technology Proceedings (Cat. No.00EX420)</title><addtitle>ICCT</addtitle><description>A tele-learning system may be modeled using an object-oriented approach which lends to eventual simulation using object-oriented languages. In this study, the human users of the system are included as system components with their own respective characteristics, as described by such descriptive social-economic parameters as user satisfaction, user willingness to pay, and others. The current focus of the study is on the genesis of tele-learning systems, that is, a specification of fundamental descriptive parameters, somewhat akin to genes in genetics, that may be encoded as binary strings, and of a fitness function of these parameters which is to be optimized using genetic algorithms. The fitness function measures some critical aspects of the system's behaviour of interest to the system designer. The strings corresponding to the optimal value of this function then will specify an optimal system design.</description><subject>Algorithm design and analysis</subject><subject>Costs</subject><subject>Genetic algorithms</subject><subject>Hardware</subject><subject>Humans</subject><subject>Information management</subject><subject>Object oriented modeling</subject><subject>Teleconferencing</subject><subject>Workstations</subject><isbn>9780780363946</isbn><isbn>0780363949</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81qwzAQhAWl0JL6XnrSC9hdWcpKOpVi-hMI5JKcgyyvHBXbKZZ6yNvXJYWBYb6BgWHsUUAlBNjnTdPsqxoAKmPBGHvDCqsNLJIorcI7VqT0tfQgrdRK37OX3cTziXhHKfYTPweeaaByIDdPcep5uqRMY-I_6S_1NFGOnruhP88xn8b0wG6DGxIV_75ih_e3ffNZbncfm-Z1W0ahVS69cC2g7HyrBdZSaOFrRGNQYlCeCBYQah-6NWKrAFCstfN1Z3VQopNKrtjTdTcS0fF7jqObL8frS_kLqG9HRg</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Finley, M.R.</creator><creator>Akimaru, H.</creator><creator>Yamori, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>On the design of tele-learning systems using genetic algorithms</title><author>Finley, M.R. ; Akimaru, H. ; Yamori, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-c1ab063dcb71623171c26688636f4cee071cf2cfd566b4006157ac2d97f41d343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithm design and analysis</topic><topic>Costs</topic><topic>Genetic algorithms</topic><topic>Hardware</topic><topic>Humans</topic><topic>Information management</topic><topic>Object oriented modeling</topic><topic>Teleconferencing</topic><topic>Workstations</topic><toplevel>online_resources</toplevel><creatorcontrib>Finley, M.R.</creatorcontrib><creatorcontrib>Akimaru, H.</creatorcontrib><creatorcontrib>Yamori, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Finley, M.R.</au><au>Akimaru, H.</au><au>Yamori, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the design of tele-learning systems using genetic algorithms</atitle><btitle>WCC 2000 - ICCT 2000. 2000 International Conference on Communication Technology Proceedings (Cat. No.00EX420)</btitle><stitle>ICCT</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>1209</spage><epage>1212 vol.2</epage><pages>1209-1212 vol.2</pages><isbn>9780780363946</isbn><isbn>0780363949</isbn><abstract>A tele-learning system may be modeled using an object-oriented approach which lends to eventual simulation using object-oriented languages. In this study, the human users of the system are included as system components with their own respective characteristics, as described by such descriptive social-economic parameters as user satisfaction, user willingness to pay, and others. The current focus of the study is on the genesis of tele-learning systems, that is, a specification of fundamental descriptive parameters, somewhat akin to genes in genetics, that may be encoded as binary strings, and of a fitness function of these parameters which is to be optimized using genetic algorithms. The fitness function measures some critical aspects of the system's behaviour of interest to the system designer. The strings corresponding to the optimal value of this function then will specify an optimal system design.</abstract><pub>IEEE</pub><doi>10.1109/ICCT.2000.890889</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780363946
ispartof WCC 2000 - ICCT 2000. 2000 International Conference on Communication Technology Proceedings (Cat. No.00EX420), 2000, Vol.2, p.1209-1212 vol.2
issn
language eng
recordid cdi_ieee_primary_890889
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Costs
Genetic algorithms
Hardware
Humans
Information management
Object oriented modeling
Teleconferencing
Workstations
title On the design of tele-learning systems using genetic algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20design%20of%20tele-learning%20systems%20using%20genetic%20algorithms&rft.btitle=WCC%202000%20-%20ICCT%202000.%202000%20International%20Conference%20on%20Communication%20Technology%20Proceedings%20(Cat.%20No.00EX420)&rft.au=Finley,%20M.R.&rft.date=2000&rft.volume=2&rft.spage=1209&rft.epage=1212%20vol.2&rft.pages=1209-1212%20vol.2&rft.isbn=9780780363946&rft.isbn_list=0780363949&rft_id=info:doi/10.1109/ICCT.2000.890889&rft_dat=%3Cieee_6IE%3E890889%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=890889&rfr_iscdi=true