Assessment for INS/GNSS/Odometer/Barometer Integration in Loosely-Coupled and Tightly-Coupled Scheme in a GNSS-Degraded Environment

With the increasing demands for seamless landvehicle navigation, systems with robust performance are required in highly urbanized areas. The traditional INS/GNSS integration is widely applied to solve this issue. However, the system still suffers from bad GNSS signal reception and INS time accumulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2020-03, Vol.20 (6), p.3057-3069
Hauptverfasser: Chiang, Kai-Wei, Chang, Hsiu-Wen, Li, Yu-Hua, Tsai, Guang-Je, Tseng, Chung-Lin, Tien, Yu-Chi, Hsu, Pei-Ching
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the increasing demands for seamless landvehicle navigation, systems with robust performance are required in highly urbanized areas. The traditional INS/GNSS integration is widely applied to solve this issue. However, the system still suffers from bad GNSS signal reception and INS time accumulated errors that seamlessness and stability are difficult to maintain. In this study, the performance of the low cost INS/GNSS with aiding sensors, such as an odometer and barometer, was evaluated for both the loosely-coupled (LC) scheme and tightly-coupled (TC) scheme. Moreover, considering barometric error accumulation, a vehicle-behavior based drift control method has been proposed. An experiment was conducted under harsh GNSS-degraded scenarios to assess the characteristics and performance for different sensor combinations, using single constellation (GPS) with single-frequency (L1 band) measurement. Overall, the TC scheme without additional strategies in detecting abnormal measurement encounters more challenges to achieve stable performance. In an INS/GNSS/barometer system with the proposed drift control method, error accumulation under unpredictable environmental changes was successfully mitigated in both schemes. The proposed method can maintain a height accuracy of 2-meter level root mean square even after a long term operation. In an INS/GNSS/odometer combination, improvements were observed in the horizontal and vertical direction for both schemes. According to statistical analysis, an INS/GNSS/odometer/barometercombination shows 16.57% and 6.11% in the horizontal, and 30.71% and 71.28% in the vertical for the LC scheme and TC scheme, compared with an INS/GNSS combination.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2019.2954532