Effect of Temperature on Limit Photoconversion Efficiency in Silicon Solar Cells

The photoconversion efficiency and the temperature coefficient of an ideal silicon solar cell are investigated theoretically as a function of the base thickness. It is found that the efficiency depends nonmonotonically, whereas the temperature coefficient increases logarithmically with the thickness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2020-01, Vol.10 (1), p.63-69
Hauptverfasser: Sachenko, Anatoly, Kostylyov, Vitaliy, Sokolovskyi, Igor, Evstigneev, Mykhaylo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 1
container_start_page 63
container_title IEEE journal of photovoltaics
container_volume 10
creator Sachenko, Anatoly
Kostylyov, Vitaliy
Sokolovskyi, Igor
Evstigneev, Mykhaylo
description The photoconversion efficiency and the temperature coefficient of an ideal silicon solar cell are investigated theoretically as a function of the base thickness. It is found that the efficiency depends nonmonotonically, whereas the temperature coefficient increases logarithmically with the thickness. Under the AM1.5 G illumination conditions at the temperature of 25 °C, the maximal efficiency value of 29.7% at the thickness 90 μm is obtained. The temperature coefficient has the value of 0.234%/K at the optimal base thickness. Analogous calculations were also performed for nonideal solar cells, in which the extrinsic recombination mechanisms, doping, and parasitic series and shunt resistance play a role. It is shown that all of these factors, except for the shunt resistance, result in an increase of the temperature coefficient relative to its value obtained for an ideal solar cell. In other words, the thickness dependent value obtained for an ideal solar cell is the theoretical lower limit of the efficiency temperature coefficient if the shunting effect is negligible. The shunting resistance, in contrast, results in a further reduction of the temperature coefficient relative to the value obtained for an ideal solar cell. The implications of these findings in the solar cell design are discussed.
doi_str_mv 10.1109/JPHOTOV.2019.2949418
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8903535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8903535</ieee_id><sourcerecordid>2330027110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-c3a23aadb2be63daa1fae5c6247e9d984e7338b1251a7a049b6715e2abe4962d3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGp_gR4CnnfN12Y3RynVKoUWWr2GbHYWU7abmmyF_ntTWs0cMsy878zwIPRASU4pUU_vq_lys_zMGaEqZ0ooQasrNGK0kBkXhF__5byit2gS45akJ0khpRih1axtwQ7Yt3gDuz0EMxwCYN_jhdu5Aa--_OCt738gRJeqSe6sg94esevx2nUuNfHadybgKXRdvEM3rekiTC7_GH28zDbTebZYvr5NnxeZZUoNmeWGcWOamtUgeWMMbQ0UVjJRgmpUJaBMB9eUFdSUhghVy5IWwEwNQknW8DF6PM_dB_99gDjorT-EPq3UjHNCWJnoJJU4q2zwMQZo9T64nQlHTYk-4dMXfPqET1_wJdv92eYA4N9SKcKLFL_rumxK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330027110</pqid></control><display><type>article</type><title>Effect of Temperature on Limit Photoconversion Efficiency in Silicon Solar Cells</title><source>IEEE Electronic Library (IEL)</source><creator>Sachenko, Anatoly ; Kostylyov, Vitaliy ; Sokolovskyi, Igor ; Evstigneev, Mykhaylo</creator><creatorcontrib>Sachenko, Anatoly ; Kostylyov, Vitaliy ; Sokolovskyi, Igor ; Evstigneev, Mykhaylo</creatorcontrib><description>The photoconversion efficiency and the temperature coefficient of an ideal silicon solar cell are investigated theoretically as a function of the base thickness. It is found that the efficiency depends nonmonotonically, whereas the temperature coefficient increases logarithmically with the thickness. Under the AM1.5 G illumination conditions at the temperature of 25 °C, the maximal efficiency value of 29.7% at the thickness 90 μm is obtained. The temperature coefficient has the value of 0.234%/K at the optimal base thickness. Analogous calculations were also performed for nonideal solar cells, in which the extrinsic recombination mechanisms, doping, and parasitic series and shunt resistance play a role. It is shown that all of these factors, except for the shunt resistance, result in an increase of the temperature coefficient relative to its value obtained for an ideal solar cell. In other words, the thickness dependent value obtained for an ideal solar cell is the theoretical lower limit of the efficiency temperature coefficient if the shunting effect is negligible. The shunting resistance, in contrast, results in a further reduction of the temperature coefficient relative to the value obtained for an ideal solar cell. The implications of these findings in the solar cell design are discussed.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2019.2949418</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Absorption ; Coefficients ; Efficiency ; Efficiency limit ; Mathematical analysis ; Ocean temperature ; Photonic band gap ; Photovoltaic cells ; Quantum efficiency ; Shunt resistance ; Silicon ; solar cell (SC) ; Solar cells ; temperature coefficient ; Temperature dependence ; Temperature effects ; Temperature measurement ; Thickness</subject><ispartof>IEEE journal of photovoltaics, 2020-01, Vol.10 (1), p.63-69</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-c3a23aadb2be63daa1fae5c6247e9d984e7338b1251a7a049b6715e2abe4962d3</citedby><cites>FETCH-LOGICAL-c299t-c3a23aadb2be63daa1fae5c6247e9d984e7338b1251a7a049b6715e2abe4962d3</cites><orcidid>0000-0002-7056-2573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8903535$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8903535$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sachenko, Anatoly</creatorcontrib><creatorcontrib>Kostylyov, Vitaliy</creatorcontrib><creatorcontrib>Sokolovskyi, Igor</creatorcontrib><creatorcontrib>Evstigneev, Mykhaylo</creatorcontrib><title>Effect of Temperature on Limit Photoconversion Efficiency in Silicon Solar Cells</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>The photoconversion efficiency and the temperature coefficient of an ideal silicon solar cell are investigated theoretically as a function of the base thickness. It is found that the efficiency depends nonmonotonically, whereas the temperature coefficient increases logarithmically with the thickness. Under the AM1.5 G illumination conditions at the temperature of 25 °C, the maximal efficiency value of 29.7% at the thickness 90 μm is obtained. The temperature coefficient has the value of 0.234%/K at the optimal base thickness. Analogous calculations were also performed for nonideal solar cells, in which the extrinsic recombination mechanisms, doping, and parasitic series and shunt resistance play a role. It is shown that all of these factors, except for the shunt resistance, result in an increase of the temperature coefficient relative to its value obtained for an ideal solar cell. In other words, the thickness dependent value obtained for an ideal solar cell is the theoretical lower limit of the efficiency temperature coefficient if the shunting effect is negligible. The shunting resistance, in contrast, results in a further reduction of the temperature coefficient relative to the value obtained for an ideal solar cell. The implications of these findings in the solar cell design are discussed.</description><subject>Absorption</subject><subject>Coefficients</subject><subject>Efficiency</subject><subject>Efficiency limit</subject><subject>Mathematical analysis</subject><subject>Ocean temperature</subject><subject>Photonic band gap</subject><subject>Photovoltaic cells</subject><subject>Quantum efficiency</subject><subject>Shunt resistance</subject><subject>Silicon</subject><subject>solar cell (SC)</subject><subject>Solar cells</subject><subject>temperature coefficient</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>Temperature measurement</subject><subject>Thickness</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWGp_gR4CnnfN12Y3RynVKoUWWr2GbHYWU7abmmyF_ntTWs0cMsy878zwIPRASU4pUU_vq_lys_zMGaEqZ0ooQasrNGK0kBkXhF__5byit2gS45akJ0khpRih1axtwQ7Yt3gDuz0EMxwCYN_jhdu5Aa--_OCt738gRJeqSe6sg94esevx2nUuNfHadybgKXRdvEM3rekiTC7_GH28zDbTebZYvr5NnxeZZUoNmeWGcWOamtUgeWMMbQ0UVjJRgmpUJaBMB9eUFdSUhghVy5IWwEwNQknW8DF6PM_dB_99gDjorT-EPq3UjHNCWJnoJJU4q2zwMQZo9T64nQlHTYk-4dMXfPqET1_wJdv92eYA4N9SKcKLFL_rumxK</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Sachenko, Anatoly</creator><creator>Kostylyov, Vitaliy</creator><creator>Sokolovskyi, Igor</creator><creator>Evstigneev, Mykhaylo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7056-2573</orcidid></search><sort><creationdate>202001</creationdate><title>Effect of Temperature on Limit Photoconversion Efficiency in Silicon Solar Cells</title><author>Sachenko, Anatoly ; Kostylyov, Vitaliy ; Sokolovskyi, Igor ; Evstigneev, Mykhaylo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-c3a23aadb2be63daa1fae5c6247e9d984e7338b1251a7a049b6715e2abe4962d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Coefficients</topic><topic>Efficiency</topic><topic>Efficiency limit</topic><topic>Mathematical analysis</topic><topic>Ocean temperature</topic><topic>Photonic band gap</topic><topic>Photovoltaic cells</topic><topic>Quantum efficiency</topic><topic>Shunt resistance</topic><topic>Silicon</topic><topic>solar cell (SC)</topic><topic>Solar cells</topic><topic>temperature coefficient</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>Temperature measurement</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sachenko, Anatoly</creatorcontrib><creatorcontrib>Kostylyov, Vitaliy</creatorcontrib><creatorcontrib>Sokolovskyi, Igor</creatorcontrib><creatorcontrib>Evstigneev, Mykhaylo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sachenko, Anatoly</au><au>Kostylyov, Vitaliy</au><au>Sokolovskyi, Igor</au><au>Evstigneev, Mykhaylo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Temperature on Limit Photoconversion Efficiency in Silicon Solar Cells</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2020-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>63</spage><epage>69</epage><pages>63-69</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>The photoconversion efficiency and the temperature coefficient of an ideal silicon solar cell are investigated theoretically as a function of the base thickness. It is found that the efficiency depends nonmonotonically, whereas the temperature coefficient increases logarithmically with the thickness. Under the AM1.5 G illumination conditions at the temperature of 25 °C, the maximal efficiency value of 29.7% at the thickness 90 μm is obtained. The temperature coefficient has the value of 0.234%/K at the optimal base thickness. Analogous calculations were also performed for nonideal solar cells, in which the extrinsic recombination mechanisms, doping, and parasitic series and shunt resistance play a role. It is shown that all of these factors, except for the shunt resistance, result in an increase of the temperature coefficient relative to its value obtained for an ideal solar cell. In other words, the thickness dependent value obtained for an ideal solar cell is the theoretical lower limit of the efficiency temperature coefficient if the shunting effect is negligible. The shunting resistance, in contrast, results in a further reduction of the temperature coefficient relative to the value obtained for an ideal solar cell. The implications of these findings in the solar cell design are discussed.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2019.2949418</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7056-2573</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2020-01, Vol.10 (1), p.63-69
issn 2156-3381
2156-3403
language eng
recordid cdi_ieee_primary_8903535
source IEEE Electronic Library (IEL)
subjects Absorption
Coefficients
Efficiency
Efficiency limit
Mathematical analysis
Ocean temperature
Photonic band gap
Photovoltaic cells
Quantum efficiency
Shunt resistance
Silicon
solar cell (SC)
Solar cells
temperature coefficient
Temperature dependence
Temperature effects
Temperature measurement
Thickness
title Effect of Temperature on Limit Photoconversion Efficiency in Silicon Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Temperature%20on%20Limit%20Photoconversion%20Efficiency%20in%20Silicon%20Solar%20Cells&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Sachenko,%20Anatoly&rft.date=2020-01&rft.volume=10&rft.issue=1&rft.spage=63&rft.epage=69&rft.pages=63-69&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2019.2949418&rft_dat=%3Cproquest_RIE%3E2330027110%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330027110&rft_id=info:pmid/&rft_ieee_id=8903535&rfr_iscdi=true