Learning Articulated Constraints From a One-Shot Demonstration for Robot Manipulation Planning
Robots manipulating in domestic environments generally need to interact with articulated objects, such as doors, drawers, laptops and swivel chairs. The rigid bodies that make up these objects are connected by a revolute pair or a prismatic pair. Robots are expected to learn and understand the objec...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.172584-172596 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 172596 |
---|---|
container_issue | |
container_start_page | 172584 |
container_title | IEEE access |
container_volume | 7 |
creator | Liu, Yizhou Zha, Fusheng Sun, Lining Li, Jingxuan Li, Mantian Wang, Xin |
description | Robots manipulating in domestic environments generally need to interact with articulated objects, such as doors, drawers, laptops and swivel chairs. The rigid bodies that make up these objects are connected by a revolute pair or a prismatic pair. Robots are expected to learn and understand the objects' articulated constraints with a simple interaction method. In this way, the autonomy of robot manipulation will be greatly improved in an environment with unstructured constraints. In this paper, a method is proposed to obtain the articulated objects' constraint model by learning from a one-shot continuous visual demonstration which contains multistep movements, and this enables human teacher to continuously demonstrate several tasks at once without manual segmentation. At the end of this paper, a six-degree-of-freedom robot uses the constraint model obtained by demonstration learning to achieve manipulation planning of various tasks based on the AG-CBiRRT algorithm. |
doi_str_mv | 10.1109/ACCESS.2019.2953894 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8903534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8903534</ieee_id><doaj_id>oai_doaj_org_article_dc0df8d053f24d1f8a9096a2ebd1495f</doaj_id><sourcerecordid>2455644136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ee60d2be7faf3d9720a19ddf71a84ad261b4410ae91bf8ce9d084fc5b93938d33</originalsourceid><addsrcrecordid>eNpNkc1OwzAQhCMEEgj6BL1E4pziv6T2sQoFKhUVUbhibeJ1SdXaxUkPvD0OQRW-rDW7M17rS5IxJRNKibqbleV8vZ4wQtWEqZxLJc6SK0YLlfGcF-f_7pfJqG23JB4ZpXx6lXwsEYJr3Cadha6pjzvo0KSld20XoHFdmz4Ev08hXTnM1p--S-9xP3S7xrvU-pC--irqz-CaQ-_v5ZcduD71JrmwsGtx9Fevk_eH-Vv5lC1Xj4tytsxqQWSXIRbEsAqnFiw3asoIUGWMnVKQAgwraCUEJYCKVlbWqAyRwtZ5pbji0nB-nSyGXONhqw-h2UP41h4a_Sv4sNHQ_2-H2tTEWGlIzi0ThloJiqgCGFaGCpXbmHU7ZB2C_zpi2-mtPwYX19dM5HkRN-FFnOLDVB182wa0p1cp0T0XPXDRPRf9xyW6xoOrQcSTQyoS6Qj-A2BeioQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455644136</pqid></control><display><type>article</type><title>Learning Articulated Constraints From a One-Shot Demonstration for Robot Manipulation Planning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Yizhou ; Zha, Fusheng ; Sun, Lining ; Li, Jingxuan ; Li, Mantian ; Wang, Xin</creator><creatorcontrib>Liu, Yizhou ; Zha, Fusheng ; Sun, Lining ; Li, Jingxuan ; Li, Mantian ; Wang, Xin</creatorcontrib><description>Robots manipulating in domestic environments generally need to interact with articulated objects, such as doors, drawers, laptops and swivel chairs. The rigid bodies that make up these objects are connected by a revolute pair or a prismatic pair. Robots are expected to learn and understand the objects' articulated constraints with a simple interaction method. In this way, the autonomy of robot manipulation will be greatly improved in an environment with unstructured constraints. In this paper, a method is proposed to obtain the articulated objects' constraint model by learning from a one-shot continuous visual demonstration which contains multistep movements, and this enables human teacher to continuously demonstrate several tasks at once without manual segmentation. At the end of this paper, a six-degree-of-freedom robot uses the constraint model obtained by demonstration learning to achieve manipulation planning of various tasks based on the AG-CBiRRT algorithm.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2953894</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Constraint modelling ; Hidden Markov models ; Learning ; Learning from demonstration ; Manifolds ; Motion segmentation ; movements segmentation ; Planning ; Rigid structures ; robot manipulation planning ; Robots ; Segmentation ; Task analysis ; task space region</subject><ispartof>IEEE access, 2019, Vol.7, p.172584-172596</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ee60d2be7faf3d9720a19ddf71a84ad261b4410ae91bf8ce9d084fc5b93938d33</citedby><cites>FETCH-LOGICAL-c408t-ee60d2be7faf3d9720a19ddf71a84ad261b4410ae91bf8ce9d084fc5b93938d33</cites><orcidid>0000-0003-4689-3484 ; 0000-0003-2659-6677 ; 0000-0001-5327-9496 ; 0000-0001-9695-1940 ; 0000-0001-5557-3509 ; 0000-0002-9526-3043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8903534$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Liu, Yizhou</creatorcontrib><creatorcontrib>Zha, Fusheng</creatorcontrib><creatorcontrib>Sun, Lining</creatorcontrib><creatorcontrib>Li, Jingxuan</creatorcontrib><creatorcontrib>Li, Mantian</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><title>Learning Articulated Constraints From a One-Shot Demonstration for Robot Manipulation Planning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Robots manipulating in domestic environments generally need to interact with articulated objects, such as doors, drawers, laptops and swivel chairs. The rigid bodies that make up these objects are connected by a revolute pair or a prismatic pair. Robots are expected to learn and understand the objects' articulated constraints with a simple interaction method. In this way, the autonomy of robot manipulation will be greatly improved in an environment with unstructured constraints. In this paper, a method is proposed to obtain the articulated objects' constraint model by learning from a one-shot continuous visual demonstration which contains multistep movements, and this enables human teacher to continuously demonstrate several tasks at once without manual segmentation. At the end of this paper, a six-degree-of-freedom robot uses the constraint model obtained by demonstration learning to achieve manipulation planning of various tasks based on the AG-CBiRRT algorithm.</description><subject>Algorithms</subject><subject>Constraint modelling</subject><subject>Hidden Markov models</subject><subject>Learning</subject><subject>Learning from demonstration</subject><subject>Manifolds</subject><subject>Motion segmentation</subject><subject>movements segmentation</subject><subject>Planning</subject><subject>Rigid structures</subject><subject>robot manipulation planning</subject><subject>Robots</subject><subject>Segmentation</subject><subject>Task analysis</subject><subject>task space region</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1OwzAQhCMEEgj6BL1E4pziv6T2sQoFKhUVUbhibeJ1SdXaxUkPvD0OQRW-rDW7M17rS5IxJRNKibqbleV8vZ4wQtWEqZxLJc6SK0YLlfGcF-f_7pfJqG23JB4ZpXx6lXwsEYJr3Cadha6pjzvo0KSld20XoHFdmz4Ev08hXTnM1p--S-9xP3S7xrvU-pC--irqz-CaQ-_v5ZcduD71JrmwsGtx9Fevk_eH-Vv5lC1Xj4tytsxqQWSXIRbEsAqnFiw3asoIUGWMnVKQAgwraCUEJYCKVlbWqAyRwtZ5pbji0nB-nSyGXONhqw-h2UP41h4a_Sv4sNHQ_2-H2tTEWGlIzi0ThloJiqgCGFaGCpXbmHU7ZB2C_zpi2-mtPwYX19dM5HkRN-FFnOLDVB182wa0p1cp0T0XPXDRPRf9xyW6xoOrQcSTQyoS6Qj-A2BeioQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Liu, Yizhou</creator><creator>Zha, Fusheng</creator><creator>Sun, Lining</creator><creator>Li, Jingxuan</creator><creator>Li, Mantian</creator><creator>Wang, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4689-3484</orcidid><orcidid>https://orcid.org/0000-0003-2659-6677</orcidid><orcidid>https://orcid.org/0000-0001-5327-9496</orcidid><orcidid>https://orcid.org/0000-0001-9695-1940</orcidid><orcidid>https://orcid.org/0000-0001-5557-3509</orcidid><orcidid>https://orcid.org/0000-0002-9526-3043</orcidid></search><sort><creationdate>2019</creationdate><title>Learning Articulated Constraints From a One-Shot Demonstration for Robot Manipulation Planning</title><author>Liu, Yizhou ; Zha, Fusheng ; Sun, Lining ; Li, Jingxuan ; Li, Mantian ; Wang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ee60d2be7faf3d9720a19ddf71a84ad261b4410ae91bf8ce9d084fc5b93938d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Constraint modelling</topic><topic>Hidden Markov models</topic><topic>Learning</topic><topic>Learning from demonstration</topic><topic>Manifolds</topic><topic>Motion segmentation</topic><topic>movements segmentation</topic><topic>Planning</topic><topic>Rigid structures</topic><topic>robot manipulation planning</topic><topic>Robots</topic><topic>Segmentation</topic><topic>Task analysis</topic><topic>task space region</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yizhou</creatorcontrib><creatorcontrib>Zha, Fusheng</creatorcontrib><creatorcontrib>Sun, Lining</creatorcontrib><creatorcontrib>Li, Jingxuan</creatorcontrib><creatorcontrib>Li, Mantian</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yizhou</au><au>Zha, Fusheng</au><au>Sun, Lining</au><au>Li, Jingxuan</au><au>Li, Mantian</au><au>Wang, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Articulated Constraints From a One-Shot Demonstration for Robot Manipulation Planning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>172584</spage><epage>172596</epage><pages>172584-172596</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Robots manipulating in domestic environments generally need to interact with articulated objects, such as doors, drawers, laptops and swivel chairs. The rigid bodies that make up these objects are connected by a revolute pair or a prismatic pair. Robots are expected to learn and understand the objects' articulated constraints with a simple interaction method. In this way, the autonomy of robot manipulation will be greatly improved in an environment with unstructured constraints. In this paper, a method is proposed to obtain the articulated objects' constraint model by learning from a one-shot continuous visual demonstration which contains multistep movements, and this enables human teacher to continuously demonstrate several tasks at once without manual segmentation. At the end of this paper, a six-degree-of-freedom robot uses the constraint model obtained by demonstration learning to achieve manipulation planning of various tasks based on the AG-CBiRRT algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2953894</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4689-3484</orcidid><orcidid>https://orcid.org/0000-0003-2659-6677</orcidid><orcidid>https://orcid.org/0000-0001-5327-9496</orcidid><orcidid>https://orcid.org/0000-0001-9695-1940</orcidid><orcidid>https://orcid.org/0000-0001-5557-3509</orcidid><orcidid>https://orcid.org/0000-0002-9526-3043</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.172584-172596 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8903534 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Constraint modelling Hidden Markov models Learning Learning from demonstration Manifolds Motion segmentation movements segmentation Planning Rigid structures robot manipulation planning Robots Segmentation Task analysis task space region |
title | Learning Articulated Constraints From a One-Shot Demonstration for Robot Manipulation Planning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A15%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Articulated%20Constraints%20From%20a%20One-Shot%20Demonstration%20for%20Robot%20Manipulation%20Planning&rft.jtitle=IEEE%20access&rft.au=Liu,%20Yizhou&rft.date=2019&rft.volume=7&rft.spage=172584&rft.epage=172596&rft.pages=172584-172596&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2953894&rft_dat=%3Cproquest_ieee_%3E2455644136%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455644136&rft_id=info:pmid/&rft_ieee_id=8903534&rft_doaj_id=oai_doaj_org_article_dc0df8d053f24d1f8a9096a2ebd1495f&rfr_iscdi=true |