Delay-Sensitive Task Offloading in the 802.11p-Based Vehicular Fog Computing Systems

Vehicular fog computing (VFC) is envisioned as a promising solution to process the explosive tasks in autonomous vehicular networks. In the VFC system, task offloading is the key technique to process the computation-intensive tasks efficiently. In the task offloading, the task is transmitted to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2020-01, Vol.7 (1), p.773-785
Hauptverfasser: Wu, Qiong, Liu, Hanxu, Wang, Ruhai, Fan, Pingyi, Fan, Qiang, Li, Zhengquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 785
container_issue 1
container_start_page 773
container_title IEEE internet of things journal
container_volume 7
creator Wu, Qiong
Liu, Hanxu
Wang, Ruhai
Fan, Pingyi
Fan, Qiang
Li, Zhengquan
description Vehicular fog computing (VFC) is envisioned as a promising solution to process the explosive tasks in autonomous vehicular networks. In the VFC system, task offloading is the key technique to process the computation-intensive tasks efficiently. In the task offloading, the task is transmitted to the VFC system according to the 802.11p standard and processed by the computation resources in the VFC system. The delay of task offloading, consisting of the transmission delay and computing delay, is extremely critical especially for some delay-sensitive applications. Furthermore, the long-term reward of the system (i.e., jointly considers the transmission delay, computing delay, available resources, and diversity of vehicles and tasks) becomes a significantly important issue for providers. Thus, in this article, we propose an optimal task offloading scheme to maximize the long-term reward of the system where 802.11p is employed as the transmission protocol for the communications between vehicles. Specifically, a task offloading problem based on a semi-Markov decision process (SMDP) is formulated. To solve this problem, we utilize an iterative algorithm based on the Bellman equation to approach the desired solution. The performance of the proposed scheme has been demonstrated by extensive numerical results.
doi_str_mv 10.1109/JIOT.2019.2953047
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8896964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8896964</ieee_id><sourcerecordid>2338664384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-15e3794478372a7b1701ff4a84a49fe851e315180e3a962c1ed6189a2c33eff23</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOKY_QHwJ-NyZm6Rp8qjT6WSwh1VfQ-xuts6urU0r7N_bsiE-3fvwnXPgI-QG2ASAmfu3-TKdcAZmwk0smEzOyIgLnkRSKX7-778k1yHsGGN9LAajRiR9wsIdohWWIW_zH6SpC1906X1RuXVebmhe0naLVDPeb9XRowu4ph-4zbOucA2dVRs6rfZ11w7w6hBa3IcrcuFdEfD6dMfkffacTl-jxfJlPn1YRBk3oo0gRpEYKRMtEu6ST0gYeC-dlk4ajzoGFBCDZiicUTwDXCvQxvFMCPSeizG5O_bWTfXdYWjtruqasp-0XAitlBRa9hQcqaypQmjQ27rJ9645WGB28GcHf3bwZ0_--sztMZMj4h-vtVGmL_0FxUdpSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338664384</pqid></control><display><type>article</type><title>Delay-Sensitive Task Offloading in the 802.11p-Based Vehicular Fog Computing Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Qiong ; Liu, Hanxu ; Wang, Ruhai ; Fan, Pingyi ; Fan, Qiang ; Li, Zhengquan</creator><creatorcontrib>Wu, Qiong ; Liu, Hanxu ; Wang, Ruhai ; Fan, Pingyi ; Fan, Qiang ; Li, Zhengquan</creatorcontrib><description>Vehicular fog computing (VFC) is envisioned as a promising solution to process the explosive tasks in autonomous vehicular networks. In the VFC system, task offloading is the key technique to process the computation-intensive tasks efficiently. In the task offloading, the task is transmitted to the VFC system according to the 802.11p standard and processed by the computation resources in the VFC system. The delay of task offloading, consisting of the transmission delay and computing delay, is extremely critical especially for some delay-sensitive applications. Furthermore, the long-term reward of the system (i.e., jointly considers the transmission delay, computing delay, available resources, and diversity of vehicles and tasks) becomes a significantly important issue for providers. Thus, in this article, we propose an optimal task offloading scheme to maximize the long-term reward of the system where 802.11p is employed as the transmission protocol for the communications between vehicles. Specifically, a task offloading problem based on a semi-Markov decision process (SMDP) is formulated. To solve this problem, we utilize an iterative algorithm based on the Bellman equation to approach the desired solution. The performance of the proposed scheme has been demonstrated by extensive numerical results.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2019.2953047</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>80211p ; Ad hoc networks ; Autonomous vehicles ; Cloud computing ; Computation offloading ; Delay ; Delays ; Edge computing ; Fans ; fog computing ; Internet of Things ; Iterative algorithms ; Iterative methods ; Markov analysis ; Markov processes ; offloading ; semi-Markov decision process (SMDP) ; Task analysis ; Vehicles ; vehicular networks</subject><ispartof>IEEE internet of things journal, 2020-01, Vol.7 (1), p.773-785</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-15e3794478372a7b1701ff4a84a49fe851e315180e3a962c1ed6189a2c33eff23</citedby><cites>FETCH-LOGICAL-c293t-15e3794478372a7b1701ff4a84a49fe851e315180e3a962c1ed6189a2c33eff23</cites><orcidid>0000-0002-4899-1718 ; 0000-0002-3512-7103 ; 0000-0003-4940-7453 ; 0000-0001-8318-5626 ; 0000-0001-6913-6203 ; 0000-0002-0658-6079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8896964$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8896964$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Liu, Hanxu</creatorcontrib><creatorcontrib>Wang, Ruhai</creatorcontrib><creatorcontrib>Fan, Pingyi</creatorcontrib><creatorcontrib>Fan, Qiang</creatorcontrib><creatorcontrib>Li, Zhengquan</creatorcontrib><title>Delay-Sensitive Task Offloading in the 802.11p-Based Vehicular Fog Computing Systems</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Vehicular fog computing (VFC) is envisioned as a promising solution to process the explosive tasks in autonomous vehicular networks. In the VFC system, task offloading is the key technique to process the computation-intensive tasks efficiently. In the task offloading, the task is transmitted to the VFC system according to the 802.11p standard and processed by the computation resources in the VFC system. The delay of task offloading, consisting of the transmission delay and computing delay, is extremely critical especially for some delay-sensitive applications. Furthermore, the long-term reward of the system (i.e., jointly considers the transmission delay, computing delay, available resources, and diversity of vehicles and tasks) becomes a significantly important issue for providers. Thus, in this article, we propose an optimal task offloading scheme to maximize the long-term reward of the system where 802.11p is employed as the transmission protocol for the communications between vehicles. Specifically, a task offloading problem based on a semi-Markov decision process (SMDP) is formulated. To solve this problem, we utilize an iterative algorithm based on the Bellman equation to approach the desired solution. The performance of the proposed scheme has been demonstrated by extensive numerical results.</description><subject>80211p</subject><subject>Ad hoc networks</subject><subject>Autonomous vehicles</subject><subject>Cloud computing</subject><subject>Computation offloading</subject><subject>Delay</subject><subject>Delays</subject><subject>Edge computing</subject><subject>Fans</subject><subject>fog computing</subject><subject>Internet of Things</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>offloading</subject><subject>semi-Markov decision process (SMDP)</subject><subject>Task analysis</subject><subject>Vehicles</subject><subject>vehicular networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAUhYMoOKY_QHwJ-NyZm6Rp8qjT6WSwh1VfQ-xuts6urU0r7N_bsiE-3fvwnXPgI-QG2ASAmfu3-TKdcAZmwk0smEzOyIgLnkRSKX7-778k1yHsGGN9LAajRiR9wsIdohWWIW_zH6SpC1906X1RuXVebmhe0naLVDPeb9XRowu4ph-4zbOucA2dVRs6rfZ11w7w6hBa3IcrcuFdEfD6dMfkffacTl-jxfJlPn1YRBk3oo0gRpEYKRMtEu6ST0gYeC-dlk4ajzoGFBCDZiicUTwDXCvQxvFMCPSeizG5O_bWTfXdYWjtruqasp-0XAitlBRa9hQcqaypQmjQ27rJ9645WGB28GcHf3bwZ0_--sztMZMj4h-vtVGmL_0FxUdpSg</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Wu, Qiong</creator><creator>Liu, Hanxu</creator><creator>Wang, Ruhai</creator><creator>Fan, Pingyi</creator><creator>Fan, Qiang</creator><creator>Li, Zhengquan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4899-1718</orcidid><orcidid>https://orcid.org/0000-0002-3512-7103</orcidid><orcidid>https://orcid.org/0000-0003-4940-7453</orcidid><orcidid>https://orcid.org/0000-0001-8318-5626</orcidid><orcidid>https://orcid.org/0000-0001-6913-6203</orcidid><orcidid>https://orcid.org/0000-0002-0658-6079</orcidid></search><sort><creationdate>202001</creationdate><title>Delay-Sensitive Task Offloading in the 802.11p-Based Vehicular Fog Computing Systems</title><author>Wu, Qiong ; Liu, Hanxu ; Wang, Ruhai ; Fan, Pingyi ; Fan, Qiang ; Li, Zhengquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-15e3794478372a7b1701ff4a84a49fe851e315180e3a962c1ed6189a2c33eff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>80211p</topic><topic>Ad hoc networks</topic><topic>Autonomous vehicles</topic><topic>Cloud computing</topic><topic>Computation offloading</topic><topic>Delay</topic><topic>Delays</topic><topic>Edge computing</topic><topic>Fans</topic><topic>fog computing</topic><topic>Internet of Things</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>offloading</topic><topic>semi-Markov decision process (SMDP)</topic><topic>Task analysis</topic><topic>Vehicles</topic><topic>vehicular networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Liu, Hanxu</creatorcontrib><creatorcontrib>Wang, Ruhai</creatorcontrib><creatorcontrib>Fan, Pingyi</creatorcontrib><creatorcontrib>Fan, Qiang</creatorcontrib><creatorcontrib>Li, Zhengquan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Qiong</au><au>Liu, Hanxu</au><au>Wang, Ruhai</au><au>Fan, Pingyi</au><au>Fan, Qiang</au><au>Li, Zhengquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delay-Sensitive Task Offloading in the 802.11p-Based Vehicular Fog Computing Systems</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2020-01</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>773</spage><epage>785</epage><pages>773-785</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Vehicular fog computing (VFC) is envisioned as a promising solution to process the explosive tasks in autonomous vehicular networks. In the VFC system, task offloading is the key technique to process the computation-intensive tasks efficiently. In the task offloading, the task is transmitted to the VFC system according to the 802.11p standard and processed by the computation resources in the VFC system. The delay of task offloading, consisting of the transmission delay and computing delay, is extremely critical especially for some delay-sensitive applications. Furthermore, the long-term reward of the system (i.e., jointly considers the transmission delay, computing delay, available resources, and diversity of vehicles and tasks) becomes a significantly important issue for providers. Thus, in this article, we propose an optimal task offloading scheme to maximize the long-term reward of the system where 802.11p is employed as the transmission protocol for the communications between vehicles. Specifically, a task offloading problem based on a semi-Markov decision process (SMDP) is formulated. To solve this problem, we utilize an iterative algorithm based on the Bellman equation to approach the desired solution. The performance of the proposed scheme has been demonstrated by extensive numerical results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2019.2953047</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4899-1718</orcidid><orcidid>https://orcid.org/0000-0002-3512-7103</orcidid><orcidid>https://orcid.org/0000-0003-4940-7453</orcidid><orcidid>https://orcid.org/0000-0001-8318-5626</orcidid><orcidid>https://orcid.org/0000-0001-6913-6203</orcidid><orcidid>https://orcid.org/0000-0002-0658-6079</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2020-01, Vol.7 (1), p.773-785
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_8896964
source IEEE Electronic Library (IEL)
subjects 80211p
Ad hoc networks
Autonomous vehicles
Cloud computing
Computation offloading
Delay
Delays
Edge computing
Fans
fog computing
Internet of Things
Iterative algorithms
Iterative methods
Markov analysis
Markov processes
offloading
semi-Markov decision process (SMDP)
Task analysis
Vehicles
vehicular networks
title Delay-Sensitive Task Offloading in the 802.11p-Based Vehicular Fog Computing Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T22%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delay-Sensitive%20Task%20Offloading%20in%20the%20802.11p-Based%20Vehicular%20Fog%20Computing%20Systems&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Wu,%20Qiong&rft.date=2020-01&rft.volume=7&rft.issue=1&rft.spage=773&rft.epage=785&rft.pages=773-785&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2019.2953047&rft_dat=%3Cproquest_RIE%3E2338664384%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338664384&rft_id=info:pmid/&rft_ieee_id=8896964&rfr_iscdi=true