Matrix Infinitely Divisible Series: Tail Inequalities and Their Applications

In this paper, we study tail inequalities of the largest eigenvalue of a matrix infinitely divisible (i.d.) series, which is a finite sum of fixed matrices weighted by i.d. random variables. We obtain several types of tail inequalities, including Bennett-type and Bernstein-type inequalities. This al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2020-02, Vol.66 (2), p.1099-1117
Hauptverfasser: Zhang, Chao, Gao, Xianjie, Hsieh, Min-Hsiu, Hang, Hanyuan, Tao, Dacheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1117
container_issue 2
container_start_page 1099
container_title IEEE transactions on information theory
container_volume 66
creator Zhang, Chao
Gao, Xianjie
Hsieh, Min-Hsiu
Hang, Hanyuan
Tao, Dacheng
description In this paper, we study tail inequalities of the largest eigenvalue of a matrix infinitely divisible (i.d.) series, which is a finite sum of fixed matrices weighted by i.d. random variables. We obtain several types of tail inequalities, including Bennett-type and Bernstein-type inequalities. This allows us to further bound the expectation of the spectral norm of a matrix i.d. series. Moreover, by developing a new lower-bound function for Q(s) = (s + 1) log(s + 1) - s that appears in the Bennett-type inequality, we derive a tighter tail inequality of the largest eigenvalue of the matrix i.d. series than the Bernstein-type inequality when the matrix dimension is high. The resulting lower-bound function is of independent interest and can improve any Bennett-type concentration inequality that involves the function Q(s). The class of i.d. probability distributions is large and includes Gaussian and Poisson distributions, among many others. Therefore, our results encompass the existing work on matrix Gaussian series as a special case. Lastly, we show that the tail inequalities of a matrix i.d. series have applications in several optimization problems including the chance constrained optimization problem and the quadratic optimization problem with orthogonality constraints. In addition, we also use the resulting tail bounds to show that random matrices constructed from i.d. random variables satisfy the restricted isometry property (RIP) when it acts as a measurement matrix in compressed sensing.
doi_str_mv 10.1109/TIT.2019.2951759
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8892679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8892679</ieee_id><sourcerecordid>2344252850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-26e08e3e42e87aaa3483fdd2342d5f255651df1f3d72d761b29b1aa34a8ad3e73</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC56353CTeSq1aqHhwPYe0mWDKurtNtmL_vSktnoYZnvcdeBC6JXhCCNYP9aKeUEz0hGpBpNBnaESEkKWuBD9HI4yJKjXn6hJdpbTJKxeEjtDyzQ4x_BaL1oc2DNDsi6fwE1JYNVB8QAyQHovahiYTsN3ZJgz5VNjWFfUXhFhM-74JazuErk3X6MLbJsHNaY7R5_O8nr2Wy_eXxWy6LNeU86GkFWAFDDgFJa21jCvmnaOMUyc8FaISxHnimZPUyYqsqF6RA2aVdQwkG6P7Y28fu-0O0mA23S62-aXJJZwKqgTOFD5S69ilFMGbPoZvG_eGYHNwZrIzc3BmTs5y5O4YCQDwjyulaSU1-wOHlmex</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344252850</pqid></control><display><type>article</type><title>Matrix Infinitely Divisible Series: Tail Inequalities and Their Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Chao ; Gao, Xianjie ; Hsieh, Min-Hsiu ; Hang, Hanyuan ; Tao, Dacheng</creator><creatorcontrib>Zhang, Chao ; Gao, Xianjie ; Hsieh, Min-Hsiu ; Hang, Hanyuan ; Tao, Dacheng</creatorcontrib><description>In this paper, we study tail inequalities of the largest eigenvalue of a matrix infinitely divisible (i.d.) series, which is a finite sum of fixed matrices weighted by i.d. random variables. We obtain several types of tail inequalities, including Bennett-type and Bernstein-type inequalities. This allows us to further bound the expectation of the spectral norm of a matrix i.d. series. Moreover, by developing a new lower-bound function for Q(s) = (s + 1) log(s + 1) - s that appears in the Bennett-type inequality, we derive a tighter tail inequality of the largest eigenvalue of the matrix i.d. series than the Bernstein-type inequality when the matrix dimension is high. The resulting lower-bound function is of independent interest and can improve any Bennett-type concentration inequality that involves the function Q(s). The class of i.d. probability distributions is large and includes Gaussian and Poisson distributions, among many others. Therefore, our results encompass the existing work on matrix Gaussian series as a special case. Lastly, we show that the tail inequalities of a matrix i.d. series have applications in several optimization problems including the chance constrained optimization problem and the quadratic optimization problem with orthogonality constraints. In addition, we also use the resulting tail bounds to show that random matrices constructed from i.d. random variables satisfy the restricted isometry property (RIP) when it acts as a measurement matrix in compressed sensing.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2019.2951759</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compressed sensing ; Constraints ; Covariance matrices ; Economic models ; Eigenvalues ; Eigenvalues and eigenfunctions ; Gaussian distribution ; Inequalities ; Inequality ; infinitely divisible distribution ; largest eigenvalue ; Linear matrix inequalities ; Lower bounds ; Optimization ; Orthogonality ; Poisson distribution ; Random matrix ; Random variables ; restricted isometry property ; Series (mathematics) ; Statistical analysis ; tail inequality</subject><ispartof>IEEE transactions on information theory, 2020-02, Vol.66 (2), p.1099-1117</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-26e08e3e42e87aaa3483fdd2342d5f255651df1f3d72d761b29b1aa34a8ad3e73</cites><orcidid>0000-0002-3396-8427 ; 0000-0002-0142-0280 ; 0000-0001-7225-5449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8892679$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8892679$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Gao, Xianjie</creatorcontrib><creatorcontrib>Hsieh, Min-Hsiu</creatorcontrib><creatorcontrib>Hang, Hanyuan</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><title>Matrix Infinitely Divisible Series: Tail Inequalities and Their Applications</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In this paper, we study tail inequalities of the largest eigenvalue of a matrix infinitely divisible (i.d.) series, which is a finite sum of fixed matrices weighted by i.d. random variables. We obtain several types of tail inequalities, including Bennett-type and Bernstein-type inequalities. This allows us to further bound the expectation of the spectral norm of a matrix i.d. series. Moreover, by developing a new lower-bound function for Q(s) = (s + 1) log(s + 1) - s that appears in the Bennett-type inequality, we derive a tighter tail inequality of the largest eigenvalue of the matrix i.d. series than the Bernstein-type inequality when the matrix dimension is high. The resulting lower-bound function is of independent interest and can improve any Bennett-type concentration inequality that involves the function Q(s). The class of i.d. probability distributions is large and includes Gaussian and Poisson distributions, among many others. Therefore, our results encompass the existing work on matrix Gaussian series as a special case. Lastly, we show that the tail inequalities of a matrix i.d. series have applications in several optimization problems including the chance constrained optimization problem and the quadratic optimization problem with orthogonality constraints. In addition, we also use the resulting tail bounds to show that random matrices constructed from i.d. random variables satisfy the restricted isometry property (RIP) when it acts as a measurement matrix in compressed sensing.</description><subject>Compressed sensing</subject><subject>Constraints</subject><subject>Covariance matrices</subject><subject>Economic models</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Gaussian distribution</subject><subject>Inequalities</subject><subject>Inequality</subject><subject>infinitely divisible distribution</subject><subject>largest eigenvalue</subject><subject>Linear matrix inequalities</subject><subject>Lower bounds</subject><subject>Optimization</subject><subject>Orthogonality</subject><subject>Poisson distribution</subject><subject>Random matrix</subject><subject>Random variables</subject><subject>restricted isometry property</subject><subject>Series (mathematics)</subject><subject>Statistical analysis</subject><subject>tail inequality</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC56353CTeSq1aqHhwPYe0mWDKurtNtmL_vSktnoYZnvcdeBC6JXhCCNYP9aKeUEz0hGpBpNBnaESEkKWuBD9HI4yJKjXn6hJdpbTJKxeEjtDyzQ4x_BaL1oc2DNDsi6fwE1JYNVB8QAyQHovahiYTsN3ZJgz5VNjWFfUXhFhM-74JazuErk3X6MLbJsHNaY7R5_O8nr2Wy_eXxWy6LNeU86GkFWAFDDgFJa21jCvmnaOMUyc8FaISxHnimZPUyYqsqF6RA2aVdQwkG6P7Y28fu-0O0mA23S62-aXJJZwKqgTOFD5S69ilFMGbPoZvG_eGYHNwZrIzc3BmTs5y5O4YCQDwjyulaSU1-wOHlmex</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Zhang, Chao</creator><creator>Gao, Xianjie</creator><creator>Hsieh, Min-Hsiu</creator><creator>Hang, Hanyuan</creator><creator>Tao, Dacheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3396-8427</orcidid><orcidid>https://orcid.org/0000-0002-0142-0280</orcidid><orcidid>https://orcid.org/0000-0001-7225-5449</orcidid></search><sort><creationdate>20200201</creationdate><title>Matrix Infinitely Divisible Series: Tail Inequalities and Their Applications</title><author>Zhang, Chao ; Gao, Xianjie ; Hsieh, Min-Hsiu ; Hang, Hanyuan ; Tao, Dacheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-26e08e3e42e87aaa3483fdd2342d5f255651df1f3d72d761b29b1aa34a8ad3e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compressed sensing</topic><topic>Constraints</topic><topic>Covariance matrices</topic><topic>Economic models</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Gaussian distribution</topic><topic>Inequalities</topic><topic>Inequality</topic><topic>infinitely divisible distribution</topic><topic>largest eigenvalue</topic><topic>Linear matrix inequalities</topic><topic>Lower bounds</topic><topic>Optimization</topic><topic>Orthogonality</topic><topic>Poisson distribution</topic><topic>Random matrix</topic><topic>Random variables</topic><topic>restricted isometry property</topic><topic>Series (mathematics)</topic><topic>Statistical analysis</topic><topic>tail inequality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Gao, Xianjie</creatorcontrib><creatorcontrib>Hsieh, Min-Hsiu</creatorcontrib><creatorcontrib>Hang, Hanyuan</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Chao</au><au>Gao, Xianjie</au><au>Hsieh, Min-Hsiu</au><au>Hang, Hanyuan</au><au>Tao, Dacheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix Infinitely Divisible Series: Tail Inequalities and Their Applications</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>66</volume><issue>2</issue><spage>1099</spage><epage>1117</epage><pages>1099-1117</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In this paper, we study tail inequalities of the largest eigenvalue of a matrix infinitely divisible (i.d.) series, which is a finite sum of fixed matrices weighted by i.d. random variables. We obtain several types of tail inequalities, including Bennett-type and Bernstein-type inequalities. This allows us to further bound the expectation of the spectral norm of a matrix i.d. series. Moreover, by developing a new lower-bound function for Q(s) = (s + 1) log(s + 1) - s that appears in the Bennett-type inequality, we derive a tighter tail inequality of the largest eigenvalue of the matrix i.d. series than the Bernstein-type inequality when the matrix dimension is high. The resulting lower-bound function is of independent interest and can improve any Bennett-type concentration inequality that involves the function Q(s). The class of i.d. probability distributions is large and includes Gaussian and Poisson distributions, among many others. Therefore, our results encompass the existing work on matrix Gaussian series as a special case. Lastly, we show that the tail inequalities of a matrix i.d. series have applications in several optimization problems including the chance constrained optimization problem and the quadratic optimization problem with orthogonality constraints. In addition, we also use the resulting tail bounds to show that random matrices constructed from i.d. random variables satisfy the restricted isometry property (RIP) when it acts as a measurement matrix in compressed sensing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2019.2951759</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3396-8427</orcidid><orcidid>https://orcid.org/0000-0002-0142-0280</orcidid><orcidid>https://orcid.org/0000-0001-7225-5449</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2020-02, Vol.66 (2), p.1099-1117
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_8892679
source IEEE Electronic Library (IEL)
subjects Compressed sensing
Constraints
Covariance matrices
Economic models
Eigenvalues
Eigenvalues and eigenfunctions
Gaussian distribution
Inequalities
Inequality
infinitely divisible distribution
largest eigenvalue
Linear matrix inequalities
Lower bounds
Optimization
Orthogonality
Poisson distribution
Random matrix
Random variables
restricted isometry property
Series (mathematics)
Statistical analysis
tail inequality
title Matrix Infinitely Divisible Series: Tail Inequalities and Their Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix%20Infinitely%20Divisible%20Series:%20Tail%20Inequalities%20and%20Their%20Applications&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Zhang,%20Chao&rft.date=2020-02-01&rft.volume=66&rft.issue=2&rft.spage=1099&rft.epage=1117&rft.pages=1099-1117&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2019.2951759&rft_dat=%3Cproquest_RIE%3E2344252850%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344252850&rft_id=info:pmid/&rft_ieee_id=8892679&rfr_iscdi=true