Step-by-Step Compound Faults Diagnosis Method for Equipment Based on Majorization-Minimization and Constraint SCA
Compound faults often occur simultaneously or successively due to the complexity of intelligent mechatronic systems. The generation of such group faults will bring more difficulties to fault diagnosis. To separate the compound fault under the complex condition and improve the accuracy of the separat...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2019-12, Vol.24 (6), p.2477-2487 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2487 |
---|---|
container_issue | 6 |
container_start_page | 2477 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 24 |
creator | Hao, Yansong Song, Liuyang Ren, Bangyue Wang, Huaqing Cui, Lingli |
description | Compound faults often occur simultaneously or successively due to the complexity of intelligent mechatronic systems. The generation of such group faults will bring more difficulties to fault diagnosis. To separate the compound fault under the complex condition and improve the accuracy of the separated signal, a step-by-step compound faults diagnosis method for equipment based on majorization-minimization (MM) and constraint sparse component analysis (SCA) is proposed in this article. The method can perform under the condition that the measurements are not enough and signal sparsity is insufficient. The proposed SCA framework is the main technique to achieve compound faults separation and it is divided into three steps in this case. In the first step, MM is used to achieve sparse representation of vibration signal to satisfy the prerequisites for SCA and obtained content clustering for matrix estimation. In the second step, expanded potential function is utilized to estimate matrix, which can take advantage of sparse information from mixtures. In the final step, constraint based on the adaptive Laplace dictionary is introduced to obtain the precise source signal. Results of bearing vibration analysis by simulation, experiment, and comparison are presented to illustrate the proposed technique. |
doi_str_mv | 10.1109/TMECH.2019.2951589 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8891684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8891684</ieee_id><sourcerecordid>2333538698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-89c2187b08779eed208281dfea024f5d81e37d822b790266d71a1ebba97a14993</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhiMEEqXwArBYYk7x2U5ijyW0FKkRQ4vEZjmNA64aO7WToTw9Ka2Y7k76v_-kL4ruAU8AsHhaF7N8MSEYxISIBBIuLqIRCAYxBvZ5OeyY05gxmlxHNyFsMcYMMIyi_arTbVwe4uNEuWta19sKzVW_6wJ6MerLumACKnT37SpUO49m-960jbYdelZBV8hZVKit8-ZHdcbZuDDWNOcDqaEsdzZ0XpmBWOXT2-iqVrug785zHH3MZ-t8ES_fX9_y6TLeUMa6mIsNAZ6VmGeZ0LoimBMOVa0VJqxOKg6aZhUnpMwEJmlaZaBAl6USmQImBB1Hj6fe1rt9r0Mnt673dngpCaU0oTwVfEiRU2rjXQhe17L1plH-IAHLo1r5p1Ye1cqz2gF6OEFGa_0PcC4g5Yz-AnGJdZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333538698</pqid></control><display><type>article</type><title>Step-by-Step Compound Faults Diagnosis Method for Equipment Based on Majorization-Minimization and Constraint SCA</title><source>IEEE Electronic Library (IEL)</source><creator>Hao, Yansong ; Song, Liuyang ; Ren, Bangyue ; Wang, Huaqing ; Cui, Lingli</creator><creatorcontrib>Hao, Yansong ; Song, Liuyang ; Ren, Bangyue ; Wang, Huaqing ; Cui, Lingli</creatorcontrib><description>Compound faults often occur simultaneously or successively due to the complexity of intelligent mechatronic systems. The generation of such group faults will bring more difficulties to fault diagnosis. To separate the compound fault under the complex condition and improve the accuracy of the separated signal, a step-by-step compound faults diagnosis method for equipment based on majorization-minimization (MM) and constraint sparse component analysis (SCA) is proposed in this article. The method can perform under the condition that the measurements are not enough and signal sparsity is insufficient. The proposed SCA framework is the main technique to achieve compound faults separation and it is divided into three steps in this case. In the first step, MM is used to achieve sparse representation of vibration signal to satisfy the prerequisites for SCA and obtained content clustering for matrix estimation. In the second step, expanded potential function is utilized to estimate matrix, which can take advantage of sparse information from mixtures. In the final step, constraint based on the adaptive Laplace dictionary is introduced to obtain the precise source signal. Results of bearing vibration analysis by simulation, experiment, and comparison are presented to illustrate the proposed technique.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2019.2951589</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive sparse representation ; Clustering ; Complexity ; Compounds ; constraint sparse component analysis (CSCA) ; Estimation ; expanded potential function (EPF) ; Fault diagnosis ; Fault minimization ; Linear programming ; Machinery ; majorization-minimization (MM) ; Optimization ; Sparse matrices ; Vibration analysis ; Vibrations</subject><ispartof>IEEE/ASME transactions on mechatronics, 2019-12, Vol.24 (6), p.2477-2487</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-89c2187b08779eed208281dfea024f5d81e37d822b790266d71a1ebba97a14993</citedby><cites>FETCH-LOGICAL-c344t-89c2187b08779eed208281dfea024f5d81e37d822b790266d71a1ebba97a14993</cites><orcidid>0000-0001-5333-0829 ; 0000-0003-4436-3682 ; 0000-0002-1467-8678 ; 0000-0003-2883-4018 ; 0000-0003-4297-1668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8891684$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8891684$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hao, Yansong</creatorcontrib><creatorcontrib>Song, Liuyang</creatorcontrib><creatorcontrib>Ren, Bangyue</creatorcontrib><creatorcontrib>Wang, Huaqing</creatorcontrib><creatorcontrib>Cui, Lingli</creatorcontrib><title>Step-by-Step Compound Faults Diagnosis Method for Equipment Based on Majorization-Minimization and Constraint SCA</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Compound faults often occur simultaneously or successively due to the complexity of intelligent mechatronic systems. The generation of such group faults will bring more difficulties to fault diagnosis. To separate the compound fault under the complex condition and improve the accuracy of the separated signal, a step-by-step compound faults diagnosis method for equipment based on majorization-minimization (MM) and constraint sparse component analysis (SCA) is proposed in this article. The method can perform under the condition that the measurements are not enough and signal sparsity is insufficient. The proposed SCA framework is the main technique to achieve compound faults separation and it is divided into three steps in this case. In the first step, MM is used to achieve sparse representation of vibration signal to satisfy the prerequisites for SCA and obtained content clustering for matrix estimation. In the second step, expanded potential function is utilized to estimate matrix, which can take advantage of sparse information from mixtures. In the final step, constraint based on the adaptive Laplace dictionary is introduced to obtain the precise source signal. Results of bearing vibration analysis by simulation, experiment, and comparison are presented to illustrate the proposed technique.</description><subject>Adaptive sparse representation</subject><subject>Clustering</subject><subject>Complexity</subject><subject>Compounds</subject><subject>constraint sparse component analysis (CSCA)</subject><subject>Estimation</subject><subject>expanded potential function (EPF)</subject><subject>Fault diagnosis</subject><subject>Fault minimization</subject><subject>Linear programming</subject><subject>Machinery</subject><subject>majorization-minimization (MM)</subject><subject>Optimization</subject><subject>Sparse matrices</subject><subject>Vibration analysis</subject><subject>Vibrations</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kLFOwzAQhiMEEqXwArBYYk7x2U5ijyW0FKkRQ4vEZjmNA64aO7WToTw9Ka2Y7k76v_-kL4ruAU8AsHhaF7N8MSEYxISIBBIuLqIRCAYxBvZ5OeyY05gxmlxHNyFsMcYMMIyi_arTbVwe4uNEuWta19sKzVW_6wJ6MerLumACKnT37SpUO49m-960jbYdelZBV8hZVKit8-ZHdcbZuDDWNOcDqaEsdzZ0XpmBWOXT2-iqVrug785zHH3MZ-t8ES_fX9_y6TLeUMa6mIsNAZ6VmGeZ0LoimBMOVa0VJqxOKg6aZhUnpMwEJmlaZaBAl6USmQImBB1Hj6fe1rt9r0Mnt673dngpCaU0oTwVfEiRU2rjXQhe17L1plH-IAHLo1r5p1Ye1cqz2gF6OEFGa_0PcC4g5Yz-AnGJdZU</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Hao, Yansong</creator><creator>Song, Liuyang</creator><creator>Ren, Bangyue</creator><creator>Wang, Huaqing</creator><creator>Cui, Lingli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5333-0829</orcidid><orcidid>https://orcid.org/0000-0003-4436-3682</orcidid><orcidid>https://orcid.org/0000-0002-1467-8678</orcidid><orcidid>https://orcid.org/0000-0003-2883-4018</orcidid><orcidid>https://orcid.org/0000-0003-4297-1668</orcidid></search><sort><creationdate>201912</creationdate><title>Step-by-Step Compound Faults Diagnosis Method for Equipment Based on Majorization-Minimization and Constraint SCA</title><author>Hao, Yansong ; Song, Liuyang ; Ren, Bangyue ; Wang, Huaqing ; Cui, Lingli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-89c2187b08779eed208281dfea024f5d81e37d822b790266d71a1ebba97a14993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive sparse representation</topic><topic>Clustering</topic><topic>Complexity</topic><topic>Compounds</topic><topic>constraint sparse component analysis (CSCA)</topic><topic>Estimation</topic><topic>expanded potential function (EPF)</topic><topic>Fault diagnosis</topic><topic>Fault minimization</topic><topic>Linear programming</topic><topic>Machinery</topic><topic>majorization-minimization (MM)</topic><topic>Optimization</topic><topic>Sparse matrices</topic><topic>Vibration analysis</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Yansong</creatorcontrib><creatorcontrib>Song, Liuyang</creatorcontrib><creatorcontrib>Ren, Bangyue</creatorcontrib><creatorcontrib>Wang, Huaqing</creatorcontrib><creatorcontrib>Cui, Lingli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hao, Yansong</au><au>Song, Liuyang</au><au>Ren, Bangyue</au><au>Wang, Huaqing</au><au>Cui, Lingli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Step-by-Step Compound Faults Diagnosis Method for Equipment Based on Majorization-Minimization and Constraint SCA</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2019-12</date><risdate>2019</risdate><volume>24</volume><issue>6</issue><spage>2477</spage><epage>2487</epage><pages>2477-2487</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Compound faults often occur simultaneously or successively due to the complexity of intelligent mechatronic systems. The generation of such group faults will bring more difficulties to fault diagnosis. To separate the compound fault under the complex condition and improve the accuracy of the separated signal, a step-by-step compound faults diagnosis method for equipment based on majorization-minimization (MM) and constraint sparse component analysis (SCA) is proposed in this article. The method can perform under the condition that the measurements are not enough and signal sparsity is insufficient. The proposed SCA framework is the main technique to achieve compound faults separation and it is divided into three steps in this case. In the first step, MM is used to achieve sparse representation of vibration signal to satisfy the prerequisites for SCA and obtained content clustering for matrix estimation. In the second step, expanded potential function is utilized to estimate matrix, which can take advantage of sparse information from mixtures. In the final step, constraint based on the adaptive Laplace dictionary is introduced to obtain the precise source signal. Results of bearing vibration analysis by simulation, experiment, and comparison are presented to illustrate the proposed technique.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2019.2951589</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5333-0829</orcidid><orcidid>https://orcid.org/0000-0003-4436-3682</orcidid><orcidid>https://orcid.org/0000-0002-1467-8678</orcidid><orcidid>https://orcid.org/0000-0003-2883-4018</orcidid><orcidid>https://orcid.org/0000-0003-4297-1668</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2019-12, Vol.24 (6), p.2477-2487 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_ieee_primary_8891684 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive sparse representation Clustering Complexity Compounds constraint sparse component analysis (CSCA) Estimation expanded potential function (EPF) Fault diagnosis Fault minimization Linear programming Machinery majorization-minimization (MM) Optimization Sparse matrices Vibration analysis Vibrations |
title | Step-by-Step Compound Faults Diagnosis Method for Equipment Based on Majorization-Minimization and Constraint SCA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A49%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Step-by-Step%20Compound%20Faults%20Diagnosis%20Method%20for%20Equipment%20Based%20on%20Majorization-Minimization%20and%20Constraint%20SCA&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Hao,%20Yansong&rft.date=2019-12&rft.volume=24&rft.issue=6&rft.spage=2477&rft.epage=2487&rft.pages=2477-2487&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2019.2951589&rft_dat=%3Cproquest_RIE%3E2333538698%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333538698&rft_id=info:pmid/&rft_ieee_id=8891684&rfr_iscdi=true |