Step-by-Step Compound Faults Diagnosis Method for Equipment Based on Majorization-Minimization and Constraint SCA

Compound faults often occur simultaneously or successively due to the complexity of intelligent mechatronic systems. The generation of such group faults will bring more difficulties to fault diagnosis. To separate the compound fault under the complex condition and improve the accuracy of the separat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2019-12, Vol.24 (6), p.2477-2487
Hauptverfasser: Hao, Yansong, Song, Liuyang, Ren, Bangyue, Wang, Huaqing, Cui, Lingli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2487
container_issue 6
container_start_page 2477
container_title IEEE/ASME transactions on mechatronics
container_volume 24
creator Hao, Yansong
Song, Liuyang
Ren, Bangyue
Wang, Huaqing
Cui, Lingli
description Compound faults often occur simultaneously or successively due to the complexity of intelligent mechatronic systems. The generation of such group faults will bring more difficulties to fault diagnosis. To separate the compound fault under the complex condition and improve the accuracy of the separated signal, a step-by-step compound faults diagnosis method for equipment based on majorization-minimization (MM) and constraint sparse component analysis (SCA) is proposed in this article. The method can perform under the condition that the measurements are not enough and signal sparsity is insufficient. The proposed SCA framework is the main technique to achieve compound faults separation and it is divided into three steps in this case. In the first step, MM is used to achieve sparse representation of vibration signal to satisfy the prerequisites for SCA and obtained content clustering for matrix estimation. In the second step, expanded potential function is utilized to estimate matrix, which can take advantage of sparse information from mixtures. In the final step, constraint based on the adaptive Laplace dictionary is introduced to obtain the precise source signal. Results of bearing vibration analysis by simulation, experiment, and comparison are presented to illustrate the proposed technique.
doi_str_mv 10.1109/TMECH.2019.2951589
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8891684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8891684</ieee_id><sourcerecordid>2333538698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-89c2187b08779eed208281dfea024f5d81e37d822b790266d71a1ebba97a14993</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhiMEEqXwArBYYk7x2U5ijyW0FKkRQ4vEZjmNA64aO7WToTw9Ka2Y7k76v_-kL4ruAU8AsHhaF7N8MSEYxISIBBIuLqIRCAYxBvZ5OeyY05gxmlxHNyFsMcYMMIyi_arTbVwe4uNEuWta19sKzVW_6wJ6MerLumACKnT37SpUO49m-960jbYdelZBV8hZVKit8-ZHdcbZuDDWNOcDqaEsdzZ0XpmBWOXT2-iqVrug785zHH3MZ-t8ES_fX9_y6TLeUMa6mIsNAZ6VmGeZ0LoimBMOVa0VJqxOKg6aZhUnpMwEJmlaZaBAl6USmQImBB1Hj6fe1rt9r0Mnt673dngpCaU0oTwVfEiRU2rjXQhe17L1plH-IAHLo1r5p1Ye1cqz2gF6OEFGa_0PcC4g5Yz-AnGJdZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333538698</pqid></control><display><type>article</type><title>Step-by-Step Compound Faults Diagnosis Method for Equipment Based on Majorization-Minimization and Constraint SCA</title><source>IEEE Electronic Library (IEL)</source><creator>Hao, Yansong ; Song, Liuyang ; Ren, Bangyue ; Wang, Huaqing ; Cui, Lingli</creator><creatorcontrib>Hao, Yansong ; Song, Liuyang ; Ren, Bangyue ; Wang, Huaqing ; Cui, Lingli</creatorcontrib><description>Compound faults often occur simultaneously or successively due to the complexity of intelligent mechatronic systems. The generation of such group faults will bring more difficulties to fault diagnosis. To separate the compound fault under the complex condition and improve the accuracy of the separated signal, a step-by-step compound faults diagnosis method for equipment based on majorization-minimization (MM) and constraint sparse component analysis (SCA) is proposed in this article. The method can perform under the condition that the measurements are not enough and signal sparsity is insufficient. The proposed SCA framework is the main technique to achieve compound faults separation and it is divided into three steps in this case. In the first step, MM is used to achieve sparse representation of vibration signal to satisfy the prerequisites for SCA and obtained content clustering for matrix estimation. In the second step, expanded potential function is utilized to estimate matrix, which can take advantage of sparse information from mixtures. In the final step, constraint based on the adaptive Laplace dictionary is introduced to obtain the precise source signal. Results of bearing vibration analysis by simulation, experiment, and comparison are presented to illustrate the proposed technique.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2019.2951589</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive sparse representation ; Clustering ; Complexity ; Compounds ; constraint sparse component analysis (CSCA) ; Estimation ; expanded potential function (EPF) ; Fault diagnosis ; Fault minimization ; Linear programming ; Machinery ; majorization-minimization (MM) ; Optimization ; Sparse matrices ; Vibration analysis ; Vibrations</subject><ispartof>IEEE/ASME transactions on mechatronics, 2019-12, Vol.24 (6), p.2477-2487</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-89c2187b08779eed208281dfea024f5d81e37d822b790266d71a1ebba97a14993</citedby><cites>FETCH-LOGICAL-c344t-89c2187b08779eed208281dfea024f5d81e37d822b790266d71a1ebba97a14993</cites><orcidid>0000-0001-5333-0829 ; 0000-0003-4436-3682 ; 0000-0002-1467-8678 ; 0000-0003-2883-4018 ; 0000-0003-4297-1668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8891684$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8891684$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hao, Yansong</creatorcontrib><creatorcontrib>Song, Liuyang</creatorcontrib><creatorcontrib>Ren, Bangyue</creatorcontrib><creatorcontrib>Wang, Huaqing</creatorcontrib><creatorcontrib>Cui, Lingli</creatorcontrib><title>Step-by-Step Compound Faults Diagnosis Method for Equipment Based on Majorization-Minimization and Constraint SCA</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Compound faults often occur simultaneously or successively due to the complexity of intelligent mechatronic systems. The generation of such group faults will bring more difficulties to fault diagnosis. To separate the compound fault under the complex condition and improve the accuracy of the separated signal, a step-by-step compound faults diagnosis method for equipment based on majorization-minimization (MM) and constraint sparse component analysis (SCA) is proposed in this article. The method can perform under the condition that the measurements are not enough and signal sparsity is insufficient. The proposed SCA framework is the main technique to achieve compound faults separation and it is divided into three steps in this case. In the first step, MM is used to achieve sparse representation of vibration signal to satisfy the prerequisites for SCA and obtained content clustering for matrix estimation. In the second step, expanded potential function is utilized to estimate matrix, which can take advantage of sparse information from mixtures. In the final step, constraint based on the adaptive Laplace dictionary is introduced to obtain the precise source signal. Results of bearing vibration analysis by simulation, experiment, and comparison are presented to illustrate the proposed technique.</description><subject>Adaptive sparse representation</subject><subject>Clustering</subject><subject>Complexity</subject><subject>Compounds</subject><subject>constraint sparse component analysis (CSCA)</subject><subject>Estimation</subject><subject>expanded potential function (EPF)</subject><subject>Fault diagnosis</subject><subject>Fault minimization</subject><subject>Linear programming</subject><subject>Machinery</subject><subject>majorization-minimization (MM)</subject><subject>Optimization</subject><subject>Sparse matrices</subject><subject>Vibration analysis</subject><subject>Vibrations</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kLFOwzAQhiMEEqXwArBYYk7x2U5ijyW0FKkRQ4vEZjmNA64aO7WToTw9Ka2Y7k76v_-kL4ruAU8AsHhaF7N8MSEYxISIBBIuLqIRCAYxBvZ5OeyY05gxmlxHNyFsMcYMMIyi_arTbVwe4uNEuWta19sKzVW_6wJ6MerLumACKnT37SpUO49m-960jbYdelZBV8hZVKit8-ZHdcbZuDDWNOcDqaEsdzZ0XpmBWOXT2-iqVrug785zHH3MZ-t8ES_fX9_y6TLeUMa6mIsNAZ6VmGeZ0LoimBMOVa0VJqxOKg6aZhUnpMwEJmlaZaBAl6USmQImBB1Hj6fe1rt9r0Mnt673dngpCaU0oTwVfEiRU2rjXQhe17L1plH-IAHLo1r5p1Ye1cqz2gF6OEFGa_0PcC4g5Yz-AnGJdZU</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Hao, Yansong</creator><creator>Song, Liuyang</creator><creator>Ren, Bangyue</creator><creator>Wang, Huaqing</creator><creator>Cui, Lingli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5333-0829</orcidid><orcidid>https://orcid.org/0000-0003-4436-3682</orcidid><orcidid>https://orcid.org/0000-0002-1467-8678</orcidid><orcidid>https://orcid.org/0000-0003-2883-4018</orcidid><orcidid>https://orcid.org/0000-0003-4297-1668</orcidid></search><sort><creationdate>201912</creationdate><title>Step-by-Step Compound Faults Diagnosis Method for Equipment Based on Majorization-Minimization and Constraint SCA</title><author>Hao, Yansong ; Song, Liuyang ; Ren, Bangyue ; Wang, Huaqing ; Cui, Lingli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-89c2187b08779eed208281dfea024f5d81e37d822b790266d71a1ebba97a14993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive sparse representation</topic><topic>Clustering</topic><topic>Complexity</topic><topic>Compounds</topic><topic>constraint sparse component analysis (CSCA)</topic><topic>Estimation</topic><topic>expanded potential function (EPF)</topic><topic>Fault diagnosis</topic><topic>Fault minimization</topic><topic>Linear programming</topic><topic>Machinery</topic><topic>majorization-minimization (MM)</topic><topic>Optimization</topic><topic>Sparse matrices</topic><topic>Vibration analysis</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Yansong</creatorcontrib><creatorcontrib>Song, Liuyang</creatorcontrib><creatorcontrib>Ren, Bangyue</creatorcontrib><creatorcontrib>Wang, Huaqing</creatorcontrib><creatorcontrib>Cui, Lingli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hao, Yansong</au><au>Song, Liuyang</au><au>Ren, Bangyue</au><au>Wang, Huaqing</au><au>Cui, Lingli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Step-by-Step Compound Faults Diagnosis Method for Equipment Based on Majorization-Minimization and Constraint SCA</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2019-12</date><risdate>2019</risdate><volume>24</volume><issue>6</issue><spage>2477</spage><epage>2487</epage><pages>2477-2487</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Compound faults often occur simultaneously or successively due to the complexity of intelligent mechatronic systems. The generation of such group faults will bring more difficulties to fault diagnosis. To separate the compound fault under the complex condition and improve the accuracy of the separated signal, a step-by-step compound faults diagnosis method for equipment based on majorization-minimization (MM) and constraint sparse component analysis (SCA) is proposed in this article. The method can perform under the condition that the measurements are not enough and signal sparsity is insufficient. The proposed SCA framework is the main technique to achieve compound faults separation and it is divided into three steps in this case. In the first step, MM is used to achieve sparse representation of vibration signal to satisfy the prerequisites for SCA and obtained content clustering for matrix estimation. In the second step, expanded potential function is utilized to estimate matrix, which can take advantage of sparse information from mixtures. In the final step, constraint based on the adaptive Laplace dictionary is introduced to obtain the precise source signal. Results of bearing vibration analysis by simulation, experiment, and comparison are presented to illustrate the proposed technique.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2019.2951589</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5333-0829</orcidid><orcidid>https://orcid.org/0000-0003-4436-3682</orcidid><orcidid>https://orcid.org/0000-0002-1467-8678</orcidid><orcidid>https://orcid.org/0000-0003-2883-4018</orcidid><orcidid>https://orcid.org/0000-0003-4297-1668</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2019-12, Vol.24 (6), p.2477-2487
issn 1083-4435
1941-014X
language eng
recordid cdi_ieee_primary_8891684
source IEEE Electronic Library (IEL)
subjects Adaptive sparse representation
Clustering
Complexity
Compounds
constraint sparse component analysis (CSCA)
Estimation
expanded potential function (EPF)
Fault diagnosis
Fault minimization
Linear programming
Machinery
majorization-minimization (MM)
Optimization
Sparse matrices
Vibration analysis
Vibrations
title Step-by-Step Compound Faults Diagnosis Method for Equipment Based on Majorization-Minimization and Constraint SCA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A49%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Step-by-Step%20Compound%20Faults%20Diagnosis%20Method%20for%20Equipment%20Based%20on%20Majorization-Minimization%20and%20Constraint%20SCA&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Hao,%20Yansong&rft.date=2019-12&rft.volume=24&rft.issue=6&rft.spage=2477&rft.epage=2487&rft.pages=2477-2487&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2019.2951589&rft_dat=%3Cproquest_RIE%3E2333538698%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333538698&rft_id=info:pmid/&rft_ieee_id=8891684&rfr_iscdi=true