Multidimensional Sparse Representation for Multishot Person Reidentification
Person reidentification is known as recognizing a subject in diverse scenes obtained from nonoverlapping cameras. To the best of our knowledge, the existing sparse representation approaches for person reidentification need an additional stage for combining a different level of features. In this lett...
Gespeichert in:
Veröffentlicht in: | IEEE sensors letters 2019-12, Vol.3 (12), p.1-4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | IEEE sensors letters |
container_volume | 3 |
creator | Imani, Zeynab Soltanizadeh, Hadi Orouji, Ali A. |
description | Person reidentification is known as recognizing a subject in diverse scenes obtained from nonoverlapping cameras. To the best of our knowledge, the existing sparse representation approaches for person reidentification need an additional stage for combining a different level of features. In this letter, we propose a new sparse representation approach based on tensor along with the dictionary learning that is able to tackle both the sparse representation of features and the combination of different level of features, simultaneously. First, we construct the feature tensors using images of people. Subsequently, we learn a single cross-view invariant dictionary for representing images from different viewpoints in each tensor mode. The tensor representations of images alleviate the computational complexity of the conventional feature combination approaches, and enhance the reidentification of high dimensional data. Experimental results on iLIDS-VID dataset show the superiority of our method compared to some recent methods. |
doi_str_mv | 10.1109/LSENS.2019.2950982 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8889672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8889672</ieee_id><sourcerecordid>2333538958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-fb2305cab206581486fb5e96166751ca2b1b8ebaeda20d21b6711cd77bfe421f3</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRUVpoSHND7QbQ9dOpZH18LKE9AHug6RdC8keUYUkdiVn0b-v86B0NcPl3GE4hFwzOmWMlnfVcv66nAJl5RRKQUsNZ2QEhRI5KxSc_9svySSlFaWUaVCU0xGpXnbrPjRhg9sU2q1dZ8vOxoTZAruICbe97Yc8823MDmj6avvsHWMawgWGZiCCD_WBuiIX3q4TTk5zTD4f5h-zp7x6e3ye3Vd5DYXsc--AU1FbB1QKzQotvRNYSialEqy24JjT6Cw2FmgDzEnFWN0o5TwWwDwfk9vj3S623ztMvVm1uzg8nwxwzgXXpdADBUeqjm1KEb3pYtjY-GMYNXtx5iDO7MWZk7ihdHMsBUT8K2itS6mA_wJlv2re</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333538958</pqid></control><display><type>article</type><title>Multidimensional Sparse Representation for Multishot Person Reidentification</title><source>IEEE Electronic Library (IEL)</source><creator>Imani, Zeynab ; Soltanizadeh, Hadi ; Orouji, Ali A.</creator><creatorcontrib>Imani, Zeynab ; Soltanizadeh, Hadi ; Orouji, Ali A.</creatorcontrib><description>Person reidentification is known as recognizing a subject in diverse scenes obtained from nonoverlapping cameras. To the best of our knowledge, the existing sparse representation approaches for person reidentification need an additional stage for combining a different level of features. In this letter, we propose a new sparse representation approach based on tensor along with the dictionary learning that is able to tackle both the sparse representation of features and the combination of different level of features, simultaneously. First, we construct the feature tensors using images of people. Subsequently, we learn a single cross-view invariant dictionary for representing images from different viewpoints in each tensor mode. The tensor representations of images alleviate the computational complexity of the conventional feature combination approaches, and enhance the reidentification of high dimensional data. Experimental results on iLIDS-VID dataset show the superiority of our method compared to some recent methods.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2019.2950982</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cameras ; Dictionaries ; dictionary learning ; Knowledge representation ; Machine learning ; Mathematical analysis ; Matrix decomposition ; multidimensional sparse representation ; multishot person reidentification papers ; Probes ; Sensor signal processing ; Sensors ; tensor space ; Tensors</subject><ispartof>IEEE sensors letters, 2019-12, Vol.3 (12), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-fb2305cab206581486fb5e96166751ca2b1b8ebaeda20d21b6711cd77bfe421f3</cites><orcidid>0000-0002-8664-6069 ; 0000-0002-2210-675X ; 0000-0002-9143-9603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8889672$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8889672$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Imani, Zeynab</creatorcontrib><creatorcontrib>Soltanizadeh, Hadi</creatorcontrib><creatorcontrib>Orouji, Ali A.</creatorcontrib><title>Multidimensional Sparse Representation for Multishot Person Reidentification</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>Person reidentification is known as recognizing a subject in diverse scenes obtained from nonoverlapping cameras. To the best of our knowledge, the existing sparse representation approaches for person reidentification need an additional stage for combining a different level of features. In this letter, we propose a new sparse representation approach based on tensor along with the dictionary learning that is able to tackle both the sparse representation of features and the combination of different level of features, simultaneously. First, we construct the feature tensors using images of people. Subsequently, we learn a single cross-view invariant dictionary for representing images from different viewpoints in each tensor mode. The tensor representations of images alleviate the computational complexity of the conventional feature combination approaches, and enhance the reidentification of high dimensional data. Experimental results on iLIDS-VID dataset show the superiority of our method compared to some recent methods.</description><subject>Cameras</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>Knowledge representation</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>multidimensional sparse representation</subject><subject>multishot person reidentification papers</subject><subject>Probes</subject><subject>Sensor signal processing</subject><subject>Sensors</subject><subject>tensor space</subject><subject>Tensors</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtqwzAQRUVpoSHND7QbQ9dOpZH18LKE9AHug6RdC8keUYUkdiVn0b-v86B0NcPl3GE4hFwzOmWMlnfVcv66nAJl5RRKQUsNZ2QEhRI5KxSc_9svySSlFaWUaVCU0xGpXnbrPjRhg9sU2q1dZ8vOxoTZAruICbe97Yc8823MDmj6avvsHWMawgWGZiCCD_WBuiIX3q4TTk5zTD4f5h-zp7x6e3ye3Vd5DYXsc--AU1FbB1QKzQotvRNYSialEqy24JjT6Cw2FmgDzEnFWN0o5TwWwDwfk9vj3S623ztMvVm1uzg8nwxwzgXXpdADBUeqjm1KEb3pYtjY-GMYNXtx5iDO7MWZk7ihdHMsBUT8K2itS6mA_wJlv2re</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Imani, Zeynab</creator><creator>Soltanizadeh, Hadi</creator><creator>Orouji, Ali A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8664-6069</orcidid><orcidid>https://orcid.org/0000-0002-2210-675X</orcidid><orcidid>https://orcid.org/0000-0002-9143-9603</orcidid></search><sort><creationdate>20191201</creationdate><title>Multidimensional Sparse Representation for Multishot Person Reidentification</title><author>Imani, Zeynab ; Soltanizadeh, Hadi ; Orouji, Ali A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-fb2305cab206581486fb5e96166751ca2b1b8ebaeda20d21b6711cd77bfe421f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cameras</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>Knowledge representation</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>multidimensional sparse representation</topic><topic>multishot person reidentification papers</topic><topic>Probes</topic><topic>Sensor signal processing</topic><topic>Sensors</topic><topic>tensor space</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imani, Zeynab</creatorcontrib><creatorcontrib>Soltanizadeh, Hadi</creatorcontrib><creatorcontrib>Orouji, Ali A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Imani, Zeynab</au><au>Soltanizadeh, Hadi</au><au>Orouji, Ali A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidimensional Sparse Representation for Multishot Person Reidentification</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>3</volume><issue>12</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>Person reidentification is known as recognizing a subject in diverse scenes obtained from nonoverlapping cameras. To the best of our knowledge, the existing sparse representation approaches for person reidentification need an additional stage for combining a different level of features. In this letter, we propose a new sparse representation approach based on tensor along with the dictionary learning that is able to tackle both the sparse representation of features and the combination of different level of features, simultaneously. First, we construct the feature tensors using images of people. Subsequently, we learn a single cross-view invariant dictionary for representing images from different viewpoints in each tensor mode. The tensor representations of images alleviate the computational complexity of the conventional feature combination approaches, and enhance the reidentification of high dimensional data. Experimental results on iLIDS-VID dataset show the superiority of our method compared to some recent methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LSENS.2019.2950982</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8664-6069</orcidid><orcidid>https://orcid.org/0000-0002-2210-675X</orcidid><orcidid>https://orcid.org/0000-0002-9143-9603</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1472 |
ispartof | IEEE sensors letters, 2019-12, Vol.3 (12), p.1-4 |
issn | 2475-1472 2475-1472 |
language | eng |
recordid | cdi_ieee_primary_8889672 |
source | IEEE Electronic Library (IEL) |
subjects | Cameras Dictionaries dictionary learning Knowledge representation Machine learning Mathematical analysis Matrix decomposition multidimensional sparse representation multishot person reidentification papers Probes Sensor signal processing Sensors tensor space Tensors |
title | Multidimensional Sparse Representation for Multishot Person Reidentification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T21%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidimensional%20Sparse%20Representation%20for%20Multishot%20Person%20Reidentification&rft.jtitle=IEEE%20sensors%20letters&rft.au=Imani,%20Zeynab&rft.date=2019-12-01&rft.volume=3&rft.issue=12&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2019.2950982&rft_dat=%3Cproquest_RIE%3E2333538958%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333538958&rft_id=info:pmid/&rft_ieee_id=8889672&rfr_iscdi=true |