Multidimensional Sparse Representation for Multishot Person Reidentification

Person reidentification is known as recognizing a subject in diverse scenes obtained from nonoverlapping cameras. To the best of our knowledge, the existing sparse representation approaches for person reidentification need an additional stage for combining a different level of features. In this lett...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors letters 2019-12, Vol.3 (12), p.1-4
Hauptverfasser: Imani, Zeynab, Soltanizadeh, Hadi, Orouji, Ali A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 12
container_start_page 1
container_title IEEE sensors letters
container_volume 3
creator Imani, Zeynab
Soltanizadeh, Hadi
Orouji, Ali A.
description Person reidentification is known as recognizing a subject in diverse scenes obtained from nonoverlapping cameras. To the best of our knowledge, the existing sparse representation approaches for person reidentification need an additional stage for combining a different level of features. In this letter, we propose a new sparse representation approach based on tensor along with the dictionary learning that is able to tackle both the sparse representation of features and the combination of different level of features, simultaneously. First, we construct the feature tensors using images of people. Subsequently, we learn a single cross-view invariant dictionary for representing images from different viewpoints in each tensor mode. The tensor representations of images alleviate the computational complexity of the conventional feature combination approaches, and enhance the reidentification of high dimensional data. Experimental results on iLIDS-VID dataset show the superiority of our method compared to some recent methods.
doi_str_mv 10.1109/LSENS.2019.2950982
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8889672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8889672</ieee_id><sourcerecordid>2333538958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-fb2305cab206581486fb5e96166751ca2b1b8ebaeda20d21b6711cd77bfe421f3</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRUVpoSHND7QbQ9dOpZH18LKE9AHug6RdC8keUYUkdiVn0b-v86B0NcPl3GE4hFwzOmWMlnfVcv66nAJl5RRKQUsNZ2QEhRI5KxSc_9svySSlFaWUaVCU0xGpXnbrPjRhg9sU2q1dZ8vOxoTZAruICbe97Yc8823MDmj6avvsHWMawgWGZiCCD_WBuiIX3q4TTk5zTD4f5h-zp7x6e3ye3Vd5DYXsc--AU1FbB1QKzQotvRNYSialEqy24JjT6Cw2FmgDzEnFWN0o5TwWwDwfk9vj3S623ztMvVm1uzg8nwxwzgXXpdADBUeqjm1KEb3pYtjY-GMYNXtx5iDO7MWZk7ihdHMsBUT8K2itS6mA_wJlv2re</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333538958</pqid></control><display><type>article</type><title>Multidimensional Sparse Representation for Multishot Person Reidentification</title><source>IEEE Electronic Library (IEL)</source><creator>Imani, Zeynab ; Soltanizadeh, Hadi ; Orouji, Ali A.</creator><creatorcontrib>Imani, Zeynab ; Soltanizadeh, Hadi ; Orouji, Ali A.</creatorcontrib><description>Person reidentification is known as recognizing a subject in diverse scenes obtained from nonoverlapping cameras. To the best of our knowledge, the existing sparse representation approaches for person reidentification need an additional stage for combining a different level of features. In this letter, we propose a new sparse representation approach based on tensor along with the dictionary learning that is able to tackle both the sparse representation of features and the combination of different level of features, simultaneously. First, we construct the feature tensors using images of people. Subsequently, we learn a single cross-view invariant dictionary for representing images from different viewpoints in each tensor mode. The tensor representations of images alleviate the computational complexity of the conventional feature combination approaches, and enhance the reidentification of high dimensional data. Experimental results on iLIDS-VID dataset show the superiority of our method compared to some recent methods.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2019.2950982</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cameras ; Dictionaries ; dictionary learning ; Knowledge representation ; Machine learning ; Mathematical analysis ; Matrix decomposition ; multidimensional sparse representation ; multishot person reidentification papers ; Probes ; Sensor signal processing ; Sensors ; tensor space ; Tensors</subject><ispartof>IEEE sensors letters, 2019-12, Vol.3 (12), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-fb2305cab206581486fb5e96166751ca2b1b8ebaeda20d21b6711cd77bfe421f3</cites><orcidid>0000-0002-8664-6069 ; 0000-0002-2210-675X ; 0000-0002-9143-9603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8889672$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8889672$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Imani, Zeynab</creatorcontrib><creatorcontrib>Soltanizadeh, Hadi</creatorcontrib><creatorcontrib>Orouji, Ali A.</creatorcontrib><title>Multidimensional Sparse Representation for Multishot Person Reidentification</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>Person reidentification is known as recognizing a subject in diverse scenes obtained from nonoverlapping cameras. To the best of our knowledge, the existing sparse representation approaches for person reidentification need an additional stage for combining a different level of features. In this letter, we propose a new sparse representation approach based on tensor along with the dictionary learning that is able to tackle both the sparse representation of features and the combination of different level of features, simultaneously. First, we construct the feature tensors using images of people. Subsequently, we learn a single cross-view invariant dictionary for representing images from different viewpoints in each tensor mode. The tensor representations of images alleviate the computational complexity of the conventional feature combination approaches, and enhance the reidentification of high dimensional data. Experimental results on iLIDS-VID dataset show the superiority of our method compared to some recent methods.</description><subject>Cameras</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>Knowledge representation</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>multidimensional sparse representation</subject><subject>multishot person reidentification papers</subject><subject>Probes</subject><subject>Sensor signal processing</subject><subject>Sensors</subject><subject>tensor space</subject><subject>Tensors</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtqwzAQRUVpoSHND7QbQ9dOpZH18LKE9AHug6RdC8keUYUkdiVn0b-v86B0NcPl3GE4hFwzOmWMlnfVcv66nAJl5RRKQUsNZ2QEhRI5KxSc_9svySSlFaWUaVCU0xGpXnbrPjRhg9sU2q1dZ8vOxoTZAruICbe97Yc8823MDmj6avvsHWMawgWGZiCCD_WBuiIX3q4TTk5zTD4f5h-zp7x6e3ye3Vd5DYXsc--AU1FbB1QKzQotvRNYSialEqy24JjT6Cw2FmgDzEnFWN0o5TwWwDwfk9vj3S623ztMvVm1uzg8nwxwzgXXpdADBUeqjm1KEb3pYtjY-GMYNXtx5iDO7MWZk7ihdHMsBUT8K2itS6mA_wJlv2re</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Imani, Zeynab</creator><creator>Soltanizadeh, Hadi</creator><creator>Orouji, Ali A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8664-6069</orcidid><orcidid>https://orcid.org/0000-0002-2210-675X</orcidid><orcidid>https://orcid.org/0000-0002-9143-9603</orcidid></search><sort><creationdate>20191201</creationdate><title>Multidimensional Sparse Representation for Multishot Person Reidentification</title><author>Imani, Zeynab ; Soltanizadeh, Hadi ; Orouji, Ali A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-fb2305cab206581486fb5e96166751ca2b1b8ebaeda20d21b6711cd77bfe421f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cameras</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>Knowledge representation</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>multidimensional sparse representation</topic><topic>multishot person reidentification papers</topic><topic>Probes</topic><topic>Sensor signal processing</topic><topic>Sensors</topic><topic>tensor space</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imani, Zeynab</creatorcontrib><creatorcontrib>Soltanizadeh, Hadi</creatorcontrib><creatorcontrib>Orouji, Ali A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Imani, Zeynab</au><au>Soltanizadeh, Hadi</au><au>Orouji, Ali A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidimensional Sparse Representation for Multishot Person Reidentification</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>3</volume><issue>12</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>Person reidentification is known as recognizing a subject in diverse scenes obtained from nonoverlapping cameras. To the best of our knowledge, the existing sparse representation approaches for person reidentification need an additional stage for combining a different level of features. In this letter, we propose a new sparse representation approach based on tensor along with the dictionary learning that is able to tackle both the sparse representation of features and the combination of different level of features, simultaneously. First, we construct the feature tensors using images of people. Subsequently, we learn a single cross-view invariant dictionary for representing images from different viewpoints in each tensor mode. The tensor representations of images alleviate the computational complexity of the conventional feature combination approaches, and enhance the reidentification of high dimensional data. Experimental results on iLIDS-VID dataset show the superiority of our method compared to some recent methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LSENS.2019.2950982</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8664-6069</orcidid><orcidid>https://orcid.org/0000-0002-2210-675X</orcidid><orcidid>https://orcid.org/0000-0002-9143-9603</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1472
ispartof IEEE sensors letters, 2019-12, Vol.3 (12), p.1-4
issn 2475-1472
2475-1472
language eng
recordid cdi_ieee_primary_8889672
source IEEE Electronic Library (IEL)
subjects Cameras
Dictionaries
dictionary learning
Knowledge representation
Machine learning
Mathematical analysis
Matrix decomposition
multidimensional sparse representation
multishot person reidentification papers
Probes
Sensor signal processing
Sensors
tensor space
Tensors
title Multidimensional Sparse Representation for Multishot Person Reidentification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T21%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidimensional%20Sparse%20Representation%20for%20Multishot%20Person%20Reidentification&rft.jtitle=IEEE%20sensors%20letters&rft.au=Imani,%20Zeynab&rft.date=2019-12-01&rft.volume=3&rft.issue=12&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2019.2950982&rft_dat=%3Cproquest_RIE%3E2333538958%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333538958&rft_id=info:pmid/&rft_ieee_id=8889672&rfr_iscdi=true